Analytical expressions for the local-field factor $G(q)$ and the exchange-correlation kernel $K_{xc}(r)$ of the homogeneous electron gas

Massimiliano Corradini, Rodolfo Del Sole, Giovanni Onida, and Maurizia Palummo

*Istituto Nazionale per la Fisica della Materia, Dipartimento di Fisica dell’Università di Roma “Tor Vergata,” Via della Ricerca Scientifica, I-00133 Roma, Italy

(Received 13 January 1998; revised manuscript received 25 February 1998)

We present an analytical expression for the local-field factor $G(q)$ of the homogeneous electron gas which reproduces recently published quantum Monte Carlo data by Moroni, Ceperley, and Senatore [Phys. Rev. Lett. 75, 689 (1995)], reflects the theoretically known asymptotic behaviors for both small- and large-q limits, and allows us to express the exchange-correlation kernel K_{xc} analytically in both the direct and reciprocal space. The last property is particularly useful in numerical applications to real solids. [S0163-1829(98)04823-1]
where \(x = r_s^{1/2}, \ a_1 = 2.15, \ a_2 = 0.435, \ b_1 = 1.57, \) and \(b_2 = 0.409, \) valid for \(r_s \) in the range \(2-10.\)

The \(Q^2 \) behavior of the local-field factor at large \(Q \) has been overlooked for a long time. It was demonstrated in Ref. 12, and a clear discussion of its origin was presented in Ref. 4: its coefficient \(C \) is related to the change in kinetic energy in going from noninteracting (Kohn-Sham) electrons to interacting (real) electrons.

In this paper we fit the values of \(G(q) \) computed in Ref. 4 in such a way to obtain a simple analytical expression of both \(K_{xc}^{\pi\pi}(q) \) and \(K_{xc}(r) \), where \(K_{xc}(r) \) is the exchange-correlation kernel in real space. Our formula for \(G(q) \) is based on Lorentzian and Gaussian functions, and reads

\[
G(q) = CQ^2 + \frac{BQ^2}{g + Q^2} + \alpha Q^4 e^{-\beta Q^2}, \quad (8)
\]

where \(g = B/(A - C) \) and the two parameters \(\alpha \) and \(\beta \) are fitted in order to minimize the differences with the numerical results of Ref. 4. In particular, the best results are obtained by taking

\[
\alpha = \frac{1.5}{r_s^{1/4}} \frac{A}{Bg}, \quad (9)
\]

\[
\beta = \frac{1.2}{Bg}. \quad (10)
\]

Note that the Lorentzian contribution in Eq. (8) is a simple Hubbard-like term. This term alone already yields a qualitative agreement with the numerical data of Ref. 4. Adding the Gaussian term allows us to reproduce quantitatively the numerical evaluation of Ref. 4. In panels (a), (b), and (c) of Fig. 1, \(G(q) \) given by Eq. (8) is compared with the QMC results of Ref. 4 for the unpolarized electron gas. The agreement is satisfactory, and is globally of the same quality as that obtained with the interpolation formula originally proposed in Ref. 4. In panel (d) of Fig. 1, we extend the comparison to QMC data for the fully spin-polarized electron gas at

\[
r_s = 100.13\] Despite the fact that this value is well beyond the range considered in Ref. 4 for the parametrization of \(B \) [Eq. (7)], and that in Eq. (8) we neglect spin-polarization effects, the agreement is still fairly good.

Using Eq. (2), and after Fourier transforming, we obtain the expression of the exchange-correlation kernel \(K_{xc}(r) \) in real space:

\[
K_{xc}(r) = -\frac{4\pi e^2 C}{k_F^2} \frac{\delta^3(r)}{\delta^3(r)} + \frac{\alpha k_F}{4\pi^2 B^2} \frac{\pi}{2\beta} \left[\frac{k_F^2 r^2}{2\beta} - 3 \right] e^{-k_F^2 r^2/4\beta} - B \frac{e^{-7k_F r}}{r}. \quad (11)
\]

In Fig. 2, we compare this form of \(K_{xc} \) (without the first term, which contains a three-dimensional \(\delta \) function) with the (numerical) Fourier transform of the kernel derived from the Usamenti and Ichimaru parametrization of \(G(q) \).\(^5\) Besides the very desirable property of allowing passage from real to reciprocal space, and vice versa, without numerical transforms, the present form has another advantage, which is particularly useful in calculations for real solids: the absence of long-range oscillations, at variance with the case of those \(G(q) \) which contain a logarithmic singularity for \(q = 2k_F \), as the Ichimaru-Usamenti one (see Fig. 2). This singularity is a peculiar property of the homogenous electron gas, originating from its spherical Fermi surface and from the absence of a gap between filled and empty states. Even in the HEG, its existence is not certain, and it is likely not present in real materials.\(^14\) Hence it is better, given the present level of ignorance about the exchange-correlation kernel of real materials and the computational difficulties arising from such a singularity, to use expressions of \(G(q) \) which do not contain it, and consequently do not yield the long-range oscillations of \(K_{xc}(r) \).
In conclusion, we have presented a parametrization of published QMC results for the local field factor $G(q)$ of the homogeneous electron gas. Our analytical form fits the numerical data with the same accuracy as the form originally proposed in Ref. 4, has the right limiting behaviors for large and small q, and has the additional advantage of being analytically Fourier transformable, a property which greatly simplifies its use in density-functional calculations for real materials.

We are grateful to Saverio Moroni and Gaetano Senatore for providing us with their unpublished QMC data for $r_s = 100$, and for a critical reading of the manuscript.

14. A plateau or weak minimum at about $k = 2.5k_F$, which could be related to such a singularity, is present only in the QMC data for the spin-polarized HEG at $r_s = 100$ [Fig. 1(d)].