Astrophysical problems crossing the Gaia path

G. Bono, (Univ. of Rome TOV, INAF-OAR), + many others

Università di Roma

Roman road system

Astrophysical problems crossing the Gaia path

OUTLINE OF THE TALK

- \rightarrow Gaia tidbits
- → RR Lyrae & Galactic Halo
- \rightarrow Classical Cepheids and thin disk
- → Ho et similia
- → The Magellanic Clouds
- →Conclusions

Gaia view of the nearby Universe

Gaia Early Data Release 3 - Content

Data collected between 25 July 2014 (10:30 UTC) and 28 May 2017 (08:44 UTC) => 34

	# sources in Gaia EDR3 ^{MOR}	iths. # sources in Gaia DR2	# sources in Gaia DR1
Total number of sources	1,811,709,771	1,692,919,135	1,142,679,769
Number of 5-parameter sources	585,416,709	1 331 909 727	2 057 050
Number of 6-parameter sources	882,328,109	1,331,909,727	2,037,030
Number of 2-parameter sources	343,964,953	361,009,408	1,140,622,719
Sources with mean G magnitude	1,806,254,432	1,692,919,135	1,142,679,769
Sources with mean G _{BP} -band photometry	1,542,033,472	1,381,964,755	-
Sources with mean G _{RP} -band photometry	1,554,997,939	1,383,551,713	-
Gaia-CRF sources	1,614,173	556,869	2,191
Sources with radial velocities	7,209,831 (Gaia DR2)	7,224,631	-
Variable sources	expected with Gaia DR3 / see DR2	550,737	3,194
Known asteroids with epoch data	expected with Gaia DR3 / see DR2	14,099	-
Effective temperatures (T _{eff})	expected with Gaia DR3 / see DR2	161,497,595	-
Extinction (A_G) and reddening ($E(G_{BP}-G_{RP})$)	expected with Gaia DR3 / see DR2	87,733,672	-
Sources with radius and luminosity	expected with Gaia DR3 / see DR2	76,956,778	-
and more	expected with Gaia DR3	-	-

Source counts

Gaia Collaboration, Brown et al. 2020

Astrometric performance

Position uncertainties: G<15 0.01-0.02 mas G=17 0.05 mas G=20 0.4 mas G=21 1.0 mas

Parallax uncertainties: G<15 0.02-0.03 mas

- G=17 0.07 mas
- G=20 0.5 mas
- G=21 1.3 mas

 Proper motion uncertainties:

 G<15</td>
 0.02-0.03 mas/yr

 G=17
 0.07 mas/yr

 G=20
 0.5 mas/yr

 G=21
 1.4 mas/yr

Astrometric performance

Astrometric performance

Riello et al. 2020

Riello et al. 2020

How 40.000 stars within 100 parsec from the sun move across the sky over 400 thousand years

Credit: ESA/Gaia/DPAC, CC BY-SA 3.0 IGO

Eyer et al .: Gaia DR2 - The CaMD of Variable Stars

Why Variables? (RRLs, Cepheids, Mira)

Individual distance, age, reddening

Fig. 2. Known pulsating variable stars retrieved from published catalogues are placed in the observational CaMD, with symbols and colours representing types as shown in the legend (see A.] for the references from literature per type). All stars satisfy the selection criteria described in Appendix B. The background points in grey denote a reference subset of objects with a stricter constraint on parallax ($\sigma > 1$ mas), which limits the sample size, extinction, and reddening. The effects of interstellar matter and other phenomena (see text) are not corrected for. The condition on the relative precision of G_{BP} measurements introduces artificial cuts in the distributions of low-mass main sequence stars and red (super)giants.

Gaia DR2 \rightarrow systematics introduced by satellite scanning law

Plus automatic classifications, Plus selection effects

Lemasle + 2018

Stellar & substellar companions of nearby stars from Gaia DR2 Binarity from proper motion anomaly (Kervella + 2019)

6741 nearby (d< 50 pc) stars

Brown dwarf desert

Multiplicity of Galactic Cepheids & RR Lyrae from Gaia DR2 Binarity from proper motion anomaly (Kervella + 2019)

~350 nearby Cepheids binary fraction ~80%

~200 RR Lyrae binary fraction ~7%

Multiplicity of Galactic Cepheids & RR Lyrae from Gaia DR2 Resolved common proper motion pairs (Kervella + 2019)

Table 3. Absolute and relative motion of δ Cep A and δ Cep B (HD 213307).

	δ Cep A		δ Cep B	
	α	δ	α	δ
μ_{HG} dv_{100}	$+14.069_{0.009}$	$+2.703_{0.016}$	+14.1340.009 +0.0890.013	+3.5480.015
$\mu_{\rm H}$	$+15.35_{0.22}$	$+3.52_{0.18}$	+16.190.59	$+4.28_{0.50}$
$\Delta \mu_{\rm H}$	$+1.28_{0.23}$	$+0.82_{0.19}$	$+2.06_{0.59}$	$+0.73_{0.51}$
$\Delta_{\rm H}$	7.0		3.8	
Haz.	$+17.64_{0.81}$	$+3.98_{0.73}$	$+14.09_{0.09}$	+3.790.09
$\Delta \mu_{02}$	+3.570.82	$+1.27_{0.72}$	$-0.04_{0.11}$	$+0.24_{0.12}$
Δ_{G2}	4.7		2.1	

Notes. The absolute and linear proper motions (μ and $\Delta \mu$) are expressed in mas a⁻¹ and the differential tangential velocity of B relative to A (dv_{tat}) in km s⁻¹. The angular proper motion was converted to velocity using the GDR2 parallax of component B ($\varpi_{G2,B} = 3.393 \pm 0.049$ mas).

Trigonometric parallaxes of companion stars are more accurate than Cepheid parallaxes:

- a) Static stars no variation in photometric barycenter
- b) Systematically fainter

Eggen 62: monolithic collapse of a gas cloud.

Searle & Zinn 78: hierarchical merging of protogalaxies.

Image by LumenLearning

Image by ESO/M. Kornmesser

The Milky Way

Bright, **old** low mass stars that burn He in their cores and H in a shell.

They are found in a wide range of metallicities ([Fe/H] \approx -2.5 dex to slightly >super-solar). Yes, metal-rich too!

Short period radial pulsators (periods under around 1 day) with very characteristic light curves.

The RR Lyrae Stars

Period-luminosity relations in the nearinfrared.

They can be placed in 3D!

Ideal old tracers: bright, well constrained ages, precise positions, wide range of chemical enrichment histories.

High resolution sample (6300 spectra, 143 RRLs)

Low resolution sample (6450 spectra, 5000 RRLs)

A new calibration of the DeltaS method introduced more than 60 years ago by Preston (1959) testing everything Wavel. range, pulsation cycle, linearity over 3 dex in metallicity and for the first time including first overtone RRLs.

SDSS-SEGUE

High & Low resolution sample

Solid evidence of metal-rich RRLs

The more you get the more you want!!

Larger HR sample (>200) abundances for Mg, Ca, Ti

The more you get the more you want!!

GCs marginally cover the metal-rich regime

The more you get the more you want!!

Solid evidence of metal-rich alpha-poor RRLs

The trend is clear in Ca & Ti Milder in Mg

If supported by independent investigations \rightarrow implications on the early SNIa enrichment

A new spin on the Oosterhoff dichotomy

Largest spectroscopic catalog for field RRLs ever collected (more than 9000)

mean metallicity and spread agree with previous estimates,

RRc are on average more metal-poor

A new spin on the Oosterhoff dichotomy

A new spin on the Oosterhoff dichotomy

The transition from discrete to continuous distributions!!!

The transition from discrete to continuous distributions!!!

Galactic globulars played a minor role in building up the Halo

The increase in the population ratio is not supported by canonical HB morphology

Elements of all major chemical families \rightarrow CHEMICAL TAGGING

Zr, Ba, La, Ce, Pr, Nd, and

(Elements by astrophysical site, roughly speaking. Image by Cmglee at Wikipedia)

Eu.

The α -elements $1.0 \cdot$ Bona fide tracers of 0.5IMF SNe II and the onset SFR $[\alpha/Fe]$ of SNe Ia. 0.0-0.5A very interesting -1.0plateau and "knee" in -3-2the [α /Fe] vs [Fe/H] 0 -1[Fe/H] (metallicity) plane.

The metal-rich regime is crucial!

Here we see the MW (grey) and nearby dwarf galaxies (colored).

Light curve Fourier Metallicities

RMS=0.41

25

[Fe/H]

ASAS-SN light curves

Neo-Wise light curves

Neo-Wise + ASAS-SN Standard deviation ~0.35 dex

Light curve Fourier Metallicities

Systematics in previous empirical relations in the metal-poor and in the metal-rich regime

A new spin on radial velocity templates

barycentric velocities require demanding spectroscopic observations To overcome the limitation \rightarrow use of radial velocity template

Once period, luminosity amplitude & reference epoch are known barycentric velocity can be estimated with a single measurement

→ Phase difference between radial & luminosity cuyrve
→ Phase difference among metallic & Balmer lines
→ Phase to anchor the template(s)
→ Occurrence of sencondary features (nonlinear phenomena)
→ Amplitude (luminosity over radial velocity) ratio

All of them have been addressed in detail and solved

A new spin on radial velocity templates

Seven diagnostics based on the very same spectra

A new spin on radial velocity templates

Three dozen calibrating RRLs full coverage of the pulsation cycle thousands of spectra

Mean accuracy of RVC templates 2/3 km/sec

An application of RVC templates & DeltaS

Metallicity based on new Delta S

Rad. vel. based on RVC temp

Orphan Stream -- the kinematics of both stream RR Lyrae & Grus II are on a prograde orbit with similar orbital properties

However, uncertainties affecting dynamical & chemical properties make the connection difficult \rightarrow more statistics

THE Ho TENSION

THE H_o TENSION

Gaia DR2 Parallaxes being systematically smaller

Groenewegen 2018

~450 Cepheids with Spectroscopic abundances

Goodness of the fit <8 ~200 Cepheids

Zero-point offset of -0.049 ± 1.8 mas

Galactic & LMC slope differ at 3σ

The use of the LMC slope \rightarrow A zero-point offset of -0.1 mas

Strong correlation between ZP, period and [Fe/H]

a ZP offset of ~0.055mas \rightarrow a change in DM=0.2 at 1 kpc, DM=1.1 mag at 7 kpc

The required accuracy is 0.003 mas!!!!

CEPHEIDS AND RR LYRAE AS STANDARD CANDLES FROM HIPPARCOS TO DR1 TO DR2 TO GAIA EDR3

CEPHEIDS

RR LYRAE

G. CLEMENTINI, GAIA EDR3 - DECEMBER 3, 2020

The CCHP Pathways to a 3% Determination of the Hubble Constant

Population II route to Ho

Beaton + 2018, Breuval + 2020 + many others

RR Lyrae distance scale

PLZ (W1, W2, neo-Wise) and relative Period-Wesenheit-metallicity relations + spectroscopic (HR sample) abundances (~100 RRLs).

They agree, within the errors, with literature values.

Classical Cepheids: abundance Variations

Two dozen calibrating Galactic Cepheids

Huge prepratory work for selecting good lines

Ronaldo Fecit

Classical Cepheids: temperature variations

phase

First attempt for an effective temperature template

Very good preliminary news for NIR spectroscopy In the metal-poor regime ..

Ronaldo Fecit

Gaia view of the nearby Universe: MCs

LE NUBI VISTE CON STELLE DI DIFFERENTI ETÀ

GRANDE NUBE

GAIA COLLABORATION, X. LURI, ET AL. 2020 A&A

By Ripepi Gaia EDR3, 2020

Radial velocity structures

By Ripepi Gaia EDR3, 2020

CONCLUSIONS

→ (Almost) All stellar roads (will) lead to Gaia

 \rightarrow Golden age for resolved stellar populations

→ Ground-based follow up spectroscopy: MUSE + MOONS + 4MOST But in particular MAVIS → Halo outskirts

- → Ground-based multi-band photometry: LSST from 20-21 to 25-26 mag → where is the edge?
- \rightarrow ELT(s) see talk by E. Valenti

Thank you for your attention

Credits

To young, differently young & senior colleagues with whom I have the pleasure to share this wonderful adventure

THANKS!!!