VERBALE DELLA COMMISSIONE PER L'ORGANIZZAZIONE DEI PERCORSI DI ECCELLENZA

4 Giugno 2020

La Commissione per l'organizzazione dei Percorsi di Eccellenza per la Laurea Triennale e per la Laurea Magistrale per l'Anno Accademico 2019/20 è cosi composta:

Presidente: Il Coordinatore Prof.ssa Annalisa D'Angelo

Componente: Prof. Massimo Bianchi

Componente: Prof. ssa Paola Castrucci

Componente: Prof. Lucio Cerrito

Componente: Prof.ssa Viviana Fafone

Componente: Dr.ssa Velia Minicozzi

Componente: Prof.ssa Silvia Morante

Componente: Prof. ssa Maurizia Palummo

Componente: Prof. Mauro Sbragaglia

Componente: Prof. Fausto Vagnetti

Si riunisce a distanza tramite piattaforma Teams il giorno 4 Giugno 2020 con il seguente Ordine del Giorno:

- 1. definizione delle modalità di svolgimento delle attività del percorso e relativo calendario
- 2. definizione delle tematiche da proporre agli studenti
- 3. attribuzione dei tutor
- 4. varie ed eventuali

Sono presenti: Paola Castrucci, Lucio Cerrito, Velia Minicozzi, Silvia Morante, Maurizia Palummo, Mauro Sbragaglia, Fausto Vagnetti

Le funzioni di segretario sono svolte dalla dott.ssa Velia Minicozzi.

1. Definizione delle modalità di svolgimento delle attività del percorso e relativo calendario

Come noto l'emergenza legata al COVID-19 ha comportato l'erogazione della didattica a distanza tramite la piattaforma Teams. In questa situazione i seminari dedicati ai percorsi di

eccellenza, che nella edizione precedente sono stati organizzati nella fascia oraria tra le 13:00 e le 14:00 (in quanto l'unica accessibile a tutti gli studenti), sono stati sospesi. Si stabilisce il sequente nuovo calendario per le attività dei percorsi di eccellenza:

- le scadenze per il completamento del percorso per l'A.A. 2019-2020 sono posticipate al 31 Dicembre 2020;
- i seminari per il percorso di eccellenza della Laurea Triennale in Fisica saranno organizzati nei mesi di novembre e dicembre 2020 in forma mista;
- i seminari per il percorso di eccellenza della Laurea Magistrale in Fisica saranno organizzati nei mesi di settembre e ottobre 2020 in forma mista.

2. Definizione delle tematiche da proporre agli studenti

I componenti della Commissione raccoglieranno entro il 30 Giugno 2020 la lista dei possibili argomenti da proporre agli studenti, e relativi docenti Tutor. La lista verrà fornita agli studenti per la scelta dei temi di approfondimento.

3. Attribuzione dei Tutor

Gli studenti, una volta definito il tema da approfondire nell'ambito dei percorsi di Eccellenza, potrà concordare con il docente di riferimento il tutor docente che lo seguirà nel lavoro e nella redazione della relazione finale. L'assegnazione finale dei temi e dei tutor sarà formalizzata in una successiva riunione della Commissione.

La Commissione approva.

Letto, approvato e sottoscritto

Presidente: Prof.ssa Annalisa D'Angelo

Componente: Prof. ssa Paola Castrucci

Componente: Prof. Lucio Cerrito

Componente: Dr.ssa Velia Minicozzi

Componente: Prof.ssa Silvia Morante

Componente: Prof. ssa Maurizia Paummo

Componente: Prof. Mauro Sbragaglia

Componente: Prof. Fausto Vagnetti

ELENCO DEI TEMI PROPOSTI PER L'APPROFONDIMENTO NELL'AMBITO DEI PERCORSI DI ECCELLENZA IN FISICA

Astrofisica	
Attività solare e Clima spaziale e terrestre	Francesco Berrilli Dario Del Moro Luca Giovannelli
Come flare e emissioni di massa coronale impattano la Terra e il sistema solare	Francesco Berrilli Dario Del Moro Luca Giovannelli
Il sole attivo come paradigma di host star in sistemi esoplanetari	Francesco Berrilli Dario Del Moro Luca Giovannelli
Telescopi solari di futura generazione dallo spazio e da Terra	Francesco Berrilli Dario Del Moro Luca Giovannelli
Scala delle distanze cosmiche: proprietà' fisiche degli indicatori primari	Giuseppe Bono
Le galassie nane come laboratori per la ricerca di materia oscura	Giuseppe Bono
Determinazione di abbondanze nell'Universo locale	Giuseppe Bono
Osservatori futuri di onde gravitazionali	Viviana Fafone
Nuova fisica con le onde gravitazionali	Viviana Fafone
Riduzione e calibrazione dei dati fotometrici	Luigi Mancini
Fotometria di apertura ed estrazione di una curva di luce	Luigi Mancini
Modellizzazione di curve di luce di transiti planetari	Luigi Mancini
Rivelare segnali dal Big Bang: ricostruzione e analisi della radiazione cosmica di fondo	Marina Migliaccio Hervè Bourdin
Architettura di sistemi planetari extra-solari con risonanze di moto medio	Giuseppe Pucacco
Modelli di accelerazione di venti da buchi neri supermassicci in accrescimento	Francesco Tombesi
Modelli di feedback tra buchi neri supermassicci e galassie	Francesco Tombesi

Esplorazione dei parametri di accrescimento dei venti da buchi neri nell'intervallo di massa da stellari a supermassicci	Francesco Tombesi
Analisi di osservazioni spaziali nei raggi X di buchi neri in accrescimento	Francesco Tombesi
Analisi di variabilità temporale dal sole, alle stelle e ai nuclei galattici attivi	Interdisciplinare Giuseppe Bono
I diversi itinerari che portano alla misura dell'espansione dell'Universo	Interdisciplinare Giuseppe Bono
Dalla sintesi degli elementi alle molecole pre-biotiche	Interdisciplinare Giuseppe Bono
La vita noiosa ed avventurosa delle nane bianche, stelle di neutroni e buchi neri	Interdisciplinare Giuseppe Bono
Onde gravitazionali e scala assoluta di distanze cosmiche: implicazioni cosmologiche	Interdisciplinare Viviana Fafone

Fisica Applicata		
La dinamica delle molecole al computer	Velia Minicozzi	
Fisica della percezione acustica e basi fisiologiche della musica tonale	Arturo Moleti	
Proteine intrinsecamente disordinate: malattie neurodegenerative e virali	Silvia Morante	
	Francesco Stellato	
Ambiente di radiazione nella Stazione Spaziale Internazionale	Livio Narici	
	Luca Di Fino	
Rivelatori al silicio per lo studio dei raggi cosmici di interesse nella esplorazione	Livio Narici	
umana del cosmo	Luca Di Fino	
Illusioni sensoriali degli astronauti dovute ai raggi cosmici	Livio Narici	
	Luca Di Fino	
Protezione dagli eventi solari per gli astronauti in viaggio nello spazio profondo	Livio Narici	
	Luca Di Fino	

Fisica Nucleare e Subnucleare		
Studio e realizzazione di un rivelatore di particelle innovativo	Anna Di Ciaccio	
Misurare la massa del quark top	Umberto De Sanctis, Lucio Cerrito	
Produrre e misurare particelle elementari nelle collisioni al Large Hadron Collider: W e Z	Umberto De Sanctis, Lucio Cerrito	
Misura della vita media di un decadimento nucleare raro o determinazione del suo limite inferiore	Vincenzo Caracciolo	
Simulazione della risposta di un rivelatore di particelle tramite metodo Monte Carlo	Vincenzo Caracciolo	

La cinematica relativistica applicata ai decadimenti delle particelle	Annalisa D'Angelo
Si puo' aumentare l'efficienza della fusione nucleare per produrre energia pulita?	
	Annalisa D'Angelo
Complici matadi di applici dati di fatoroggiani su protoni a pautroni	Annalica D'Angala
Semplici metodi di analisi dati di fotoreazioni su protoni e neutroni	Annalisa D'Angelo Annalisa D'Angelo

Fisica Teorica	
Equazione di Boltzmann su reticolo	Mauro Sbragaglia
Modelli epidemici su reti complesse	Giulio Cimini
Machine Learning e Meccanica dei Fluidi	Michele Buzzicotti
Computazione quantistica: meditazioni sul futuro del calcolo	Gaetano Salina

Struttura della Materia	
Dal silicio ai nuovi materiali avanzati per la nanoelettronica: tecniche di crescita	Fabrizio Arciprete
epitassiale e di caratterizzazione elettronica e strutturale	Claudio Goletti
	Anna Sgarlata
Flatland: una escursione al computer nel mondo dei materiali 2D	Olivia Pulci
	Maurizia Palummo
La vita sulla terra primordiale. Un approccio di fisica delle Superfici	Claudio Goletti
	Sassella (Milano Bicocca)
Nanostrutture organiche di porfirine	Claudio Goletti
	Sassella (Milano Bicocca)
Processi di ossidazione di film sottili nel limite bidimensionale	Luca Camilli
Evoluzione delle proprietà elettroniche da un materiale tridimensionale a uno bidimensionale	Luca Camilli
Dalle molecole al naso elettronico: come costruire e caratterizzare un sensore	Claudio Goletti
	Anna Sgarlata
	Beatrice Bonanni
	Massimo Fanfoni
Energie per il futuro: il fotovoltaico dal Si ai nuovi materiali	Matteo Salvato
	Maurizio De Crescenzi
	Paola Castrucci
Fotorivelatori basati sul Si oltre la rivelazione della radiazione visibile	Matteo Salvato
	Maurizio De Crescenzi
	Paola Castrucci
Array planari di giunzioni Josephson a forma di grafi per fenomeni di	Matteo Cirillo
condensazione di Bose-Einstein.	Massimiliano Lucci
	Vittorio Merlo
Rivelatori di radiazione e particelle ionizzanti basati su sistemi integrati	Matteo Cirillo
superconduttori e semiconduttori.	Massimiliano Lucci
	Vittorio Merlo
Circuiti integrati basati su nSQUID ed eRSFQ, superconduttori a bassissimo	Matteo Cirillo
consumo di energia.	Massimiliano Lucci
	Vittorio Merlo