

EUCLID SPACE MISSION

(a few whys and hows)

R. Scaramella (on behalf of Euclid Science Team and Euclid Consortium)

(Euclid Consortium, old timer, Mission Survey Scientist, member of the EC Board and EST)

Lots of figures and material courtesy of: EC&ESA (SciRD, CalWG, ECSURV, ESSWG, VIS, NISP, SWGs, OUs ...)

Red Book released in July 2011 (ESA web pages)

kosmobob@inaf.it

6.3.4. <u>Mission Survey Scientist</u>

The Mission Survey Scientist leads the high-level Euclid mission activities that needs a global views and understandings of the survey planed with Euclid, of the VIS and NISP science drivers and of the performances of the telescope and the instrument.

This pivot position aims at strengthening the day-to-day communication between the Science Working Groups and the instrument and ground segment scientists, as well as the coordination of transverse scientific activities (mission definition, mission performances, calibrations, end-to-end simulations).

- He/She is responsible of the definition, modeling and optimization of the Euclid survey in order to maximize the scientific return of the mission;
- He/She is in charge of proposing to the ECL and ECCG mission scenarios and mission tradeoffs that are in lines with the core and the legacy programs, and the best scientific return to the Euclid Consortium;
- He/She is the lead of the Mission Survey Group;
- He/She has a co-leading role in the end-to-end simulations activities;
- He/She is has a leading role in the Calibration working group activities;
- He/She is responsible for finding and implementing the funding/manpower resources needed to operate the Mission Survey Group;

EUCLID CONSORTIUM SURVEY GROUP

R. Scaramella

J. Amiaux

Mission System Engineer

Coordination

Science support Zodiacal model

Dithering

Survey implementation

Science support

External surveys Straylight and star models

Deputy

Lead

♦ EC

♦ ESA

ESSWG

EST

+ES

C.S. Carvalho

C. Burigana

E. Maiorano

Coding

Dithers

0

I. Tereno

New

Deputy

Calibrations

J. Dinis

A. De Rosa

TASKS

FRANCE

PORTUGAL

ITALY

Euclid STAR Prize 2020

Euclid Consortium SURvey Group Team Scientist Award Cardone was also awarded the 2019 team star prize for theoretical work on Fisher matrices

~ 1930 DISCOVERY: THE EXPANSION OF THE UNIVERSE

Hubble 1929-1931 Recession velocity \propto redshift z is linearly proportional to distance (z<<1)

= yanctin etn $i\theta_n = \left(\frac{1+ie^{tn}}{1+ie^{tn}}\right)^2 = \left(\frac{2}{4}\right)^2$

Le Maître 1926

 $z \propto d$; $z \cong H_0 d$

CMB theory (green line) and data (red dots) in excellent agreement

Formation and growth of structures

The *how* depends on gravitation and constituents

agenzia spazia italiana

Since ~90 years dealing with Dark Matter mystery.....

Finds DM & predicts Grav Lensing from cosmic structures!!

Die Rotverschiebung von extragalaktischen Nebeln von F. Zwicky. (16. II. 33.)

was einer Geschwindigkeit von nur 10 m/sek entspricht also auf diese Weise zu einer Erklärung für die grossen geschwindigkeiten zu kommen, müsste man noch eine se grössere Dichte dunkler Materie zulassen als unter 1. oder grössere Dichte <u>dunkler Materie</u> zulassen als unter 1. oder 2.

Fritz Zwicky (1937)

 We must know how much dark matter is incorporated in nebulae in the form of cool and cold stars, macroscopic and microscopic solid bodies, and gases.

sonu noures, anu gases.

1937

IV. NEBULAE AS GRAVITATIONAL LENSES

As I have shown previously,⁶ the probability of the overlapping of images of nebulae is considerable. <u>The gravitational fields of a number of "foreground" nebulae may therefore be expected to deflect the light coming to us from certain background nebulae.</u> The observation of such gravitational lens effects promises to furnish us with the <u>simplest and most accurate determination of nebular masses</u>. No thorough search for these effects has as yet been undertaken. It

Bullet Cluster: Dark Matter!

Cluster dominant mass component not hot gas nor (simple) modified gravity: $\rho_T \not\sim \rho_B$

euclid

Integrated Sachs Wolfe (will use Planck)

Figure 12.1: Left Panel: Prediction of the ISW cross-correlation signal for different values of the dark energy density ($\Omega_{DE} = 0.10$, green line; $\Omega_{DE} = 0.20$, red line; $\Omega_{DE} = 0.30$, blue line) for universes with flat geometry (solid lines) and universes with open geometry and no dark energy. The ISW signal for universes with the same matter density is larger in open universes than in flat universes. The signal is calculated for a Euclid-like photometric survey. Right panel: The ISW cross-correlation signal for different values of the growth parameter ($\gamma = 0.44$, greened dash-dotted line; $\gamma = 0.55$, blue dashed line; $\gamma = 0.68$, e.g. a DGP model, red short dashed Both figures are taken from Rassat (2007).

Physics and cosmology from SN [? Feasibility]

Figure 16.2: Number of SNe of various types that are expected to be detected by Euclid in the J band, as a function of redshift. Estimates for SNe of type Ia (dark blue shaded region), Ibc, IIn and IIp were provided by A. Goobar based on assumptions in Goobar *et al.* (2008), using SNe Ia rates from Dahlen *et al.* (2004) and assuming a 5 year survey that monitors a patch of 10sq deg at any time. These histograms represent the N(z) for SNe with sufficient sampling to measure their lightcurve shapes (i.e. reaching 1 magnitude fainter than the peak brightness). The light-blue shaded region shows an independent estimate of the total number of SNe Ia detections including those only detected at peak luminosity, i.e. without full lightcurve measurements.

Bullet-like clusters

Velocity dispersion in galaxy clusters

> Peculiar motions on large scales

Dark Matter (indirect) evidence comes from gravity

125 Mpc/h

200 kpc

Strong and weak lensing

Cosmic structure evolution

Since ~20 years dealing with another mystery.....

The Nobel Prize in Physics 2011

INFN

Photo: U. Montan Saul Perlmutter Prize share: 1/2

Photo: U. Montan Brian P. Schmidt Prize share: 1/4

Photo: U. Montan Adam G. Riess Prize share: 1/4

The Nobel Prize in Physics 2011 was divided, one half awarded to Saul Perlmutter, the other half jointly to Brian P. Schmidt and Adam G. Riess "for the discovery of the accelerating expansion of the Universe through observations of distant supernovae".

What is the Universe made of?

Current

hypothesis

M

INFŃ

--- The relative abundances of the three presumed constituents of mass-energy in our Universe: visible matter, dark matter and dark energy (Credit: STFC/Ben Gilliland)

SNIa are standard candles...not!

Kilbinger

Redshift: $z = (\lambda_{obs} - \lambda_{em}) / \lambda_{em}$

1+z=a(0)/a(z),a(t) expansion factor

এপ

 $R_{phys} = a r_{comov}$ H = d[ln(a)]/dt = a/a

Also photometric z: less precise, but deeper and easier

INFN

1-2 µm

Expansion and Growth Histories through Gravitational Lensing

TINFN

150.6

150.4

150.2

150.0

Right Ascension [degrees]

149.8

149.6

Synergy with Planck: Universe @z~1000 vs @z~1-3

WL sims: <1" pixels

Most of the DE effects happen at z < 3

Need also <u>dynamics</u> to further disentagle

Figure C.1: Effect of dark energy on the evolution of the Universe. Left: Fraction of the density of the Universe in the form of dark energy as a function of redshift z., for a model with a cosmological constant (w=-1, black solid line), dark energy with a different equation of state (w=-0.7, red dotted line), and a modified gravity model (blue dashed line). In all cases, dark energy becomes dominant in the low redshift Universe era probed by DUNE, while the early Universe is probed by the CMB. Right: Growth factor of cosmic structures for the same three models. Only by measuring the geometry (left panel) and the growth of structure (right panel) at low redshifts can a modification of dark energy be distinguished from that of gravity. Weak lensing measures both effects.

ACDM model

Many parameters, lots of Physics

INFŃ

IndependentSymbolValuePhysical baryon density parameterΩ _b h²0.022 30 ±0.000 14Physical dark matter density parameterΩ _b h²0.1188 ±0.0010Age of the universeto13.799 ±0.021 × 10 ⁹ yearsScalar spectral indexns0.9667 ±0.0040Curvature fluctuation amplitude, k₀ = 0.002 Mpc ⁻¹ Δ _R 2.441 ±0.088 -0.092 × 10 ^{-9[17]} Reionization optical depthr0.066 ±0.012Itequation of state of dark energyw-1Sum of three neutrino massesΣm _V 0.06 eV/c ² [c][13].40Effective number of relativistic degrees of freedomNeff3.046[d][13].47Tensor/scalar ratior0Running of spectral indexd ns / d ln k0Baryon density parameter ^[b] Ω _b 0.486 ± 0.0010 ^[e] Dark matter density parameter ^[b] Ω _b 0.2589 ± 0.0057 ^[1] Matter density parameter ^[b] Ω _b 0.3089 ± 0.0062Dark matter density parameter ^[b] Ω _h 0.6911 ± 0.0062Dark energy density parameter ^[b] Ω _h 0.8159 ± 0.0086Fluctuation amplitude at 8h ⁻¹ Mpcσ8Reishift at decouplingZ ₊ 108.90 ± 0.23	Planck Collaboration Cosmological parameters ^[14]							
Physical baryon density parameter ^[a] $\Omega_b h^2$ 0.022 30 ± 0.000 14 Physical dark matter density parameter ^[a] $\Omega_c h^2$ 0.1188 ± 0.0010 Age of the universe to 13.799 ± 0.021 × 10 ⁹ years Scalar spectral index n_s 0.9667 ± 0.0040 Curvature fluctuation amplitude, $k_0 = 0.002 Mpc^{-1}$ Δ_R^2 2.441 ${}^{+0.088}_{-0.092} \times 10^{-9[17]}$ Reionization optical depth r 0.066 ± 0.012 Total density parameter ^[b] Ω_{tot} 1 Equation of state of dark energy w -1 Sum of three neutrino masses Σm_v 0.06 $eV/c^2[c][13].40$ Effective number of relativistic degrees of freedom N_{eff} 3.046 ^{[d][13].47} Tensor/scalar ratio r 0 0 Running of spectral index $d n_s / d \ln k$ 0 Baryon density parameter ^[b] Ω_b 0.2589 ± 0.0057 ^[1] Matter density parameter ^[b] Ω_m 0.3089 ± 0.0062 Dark matter density parameter ^[b] Ω_h 0.6911 ± 0.0062 [ated walues Fluctuation amplitude at $8h^{-1}$ Mpc σ_8 0.8		Description	Symbol	Value				
Independent parameter meter parameter parameterPhysical dark matter density parameter [10]Ω _c h ² 0.1188 ±0.0010Age of the universeto13.799 ±0.021 × 10 ⁹ yearsScalar spectral indexns0.9667 ±0.0040Curvature fluctuation amplitude, k ₀ = 0.002 Mpc ⁻¹ Δ_R^2 2.441 $\frac{+0.088}{-0.092} \times 10^{-9[17]}$ Reionization optical depthr0.066 ±0.012Equation of state of dark energyw-1Sum of three neutrino masses Σm_V 0.06 eV/c2 ^{[C][13]:40} Effective number of relativistic degrees of freedomNeff3.046 ^{[d][13]:47} Tensor/scalar ratior0Running of spectral indexdns/ d ln k0Baryon density parameter ^[b] Ω_b 0.0486 ± 0.0101 ^[e] Dark matter density parameter ^[b] Ω_{c} 0.3089 ± 0.0062Matter density parameter ^[b] Ω_m 0.3089 ± 0.0062Dark energy density parameter ^[b] Ω_A 0.6911 ± 0.0062Parameter P_{critt} (8.62 ± 0.12) × 10 ⁻²⁷ kg/m ^{3[1]} Fluctuation amplitude at 8h ⁻¹ Mpc σ_8 0.8159 ± 0.0086		Physical baryon density parameter ^[a]	$\Omega_{\rm b} h^2$	0.022 30 ±0.000 14				
Independent parametersAge of the universe t_0 $13.799 \pm 0.021 \times 10^9$ yearsScalar spectral index n_s 0.9667 ± 0.0040 Curvature fluctuation amplitude, $k_0 = 0.002$ Mpc ⁻¹ Δ_R^2 $2.441 \stackrel{+0.088}{-0.092} \times 10^{-9[17]}$ Reionization optical depth τ 0.066 ± 0.012 Fixed parameterTotal density parameter ^[b] Ω_{tot} 1 Equation of state of dark energy w -1 Sum of three neutrino masses Σm_v $0.06 \frac{eV/c^{2[c][13]:40}}{2.441 \cdot 0.082}$ Effective number of relativistic degrees of freedom N_{eff} $3.046^{[d][13]:47}$ Tensor/scalar ratior 0 Running of spectral index $d n_s / d \ln k$ 0 Baryon density parameter ^[b] Ω_b $0.0486 \pm 0.0010^{[e]}$ Dark matter density parameter ^[b] Ω_c $0.2589 \pm 0.0057^{[f]}$ Matter density parameter ^[b] Ω_m 0.3089 ± 0.0062 Dark energy density parameter ^[b] Ω_A 0.6911 ± 0.0062 Dark energy density parameter ^[b] Ω_A 0.6911 ± 0.0086 Pictuation amplitude at $8h^{-1}$ Mpc σ_8 0.8159 ± 0.0086		Physical dark matter density parameter ^[a]	Ω _c h ²	0.1188 ±0.0010				
parameters metersScalar spectral index $n_{\rm S}$ 0.9667 ± 0.0040 Curvature fluctuation amplitude, $k_0 = 0.002 {\rm Mpc}^{-1}$ $\Delta_{\rm R}^2$ $2.441 \frac{+0.088}{-0.092} \times 10^{-9[17]}$ Reionization optical depth τ 0.066 ± 0.012 Fixed parameterTotal density parameter ^[b] $\Omega_{\rm tot}$ 1Equation of state of dark energy w -1 Sum of three neutrino masses $\Sigma m_{\rm V}$ $0.06 {\rm eV}/c^{2[c][13]:40}$ Effective number of relativistic degrees of freedom $N_{\rm eff}$ $3.046^{[d][13]:47}$ Tensor/scalar ratior 0 Running of spectral index $d n_s / d \ln k$ 0 Hubble constant H_0 $67.74 \pm 0.46 {\rm km s}^{-1} {\rm Mpc}^{-1}$ Baryon density parameter ^[b] $\Omega_{\rm b}$ $0.0486 \pm 0.0010^{[e]}$ Dark matter density parameter ^[b] $\Omega_{\rm c}$ $0.2589 \pm 0.0057^{[f]}$ Matter density parameter ^[b] $\Omega_{\rm m}$ 0.3089 ± 0.0062 Dark energy density parameter ^[b] $\Omega_{\rm A}$ 0.6911 ± 0.0062 Critical density $\rho_{\rm crit}$ $(8.62 \pm 0.12) \times 10^{-27} {\rm kg/m}^{3[6]}$ Fluctuation amplitude at $8h^{-1}$ Mpc σ_8 0.8159 ± 0.0086 Redshift at decoupling Z_* $1.089.90 \pm 0.23$	Indepen- dent	Age of the universe	t ₀	13.799 ±0.021 × 10 ⁹ years				
IntervalCurvature fluctuation amplitude, $k_0 = 0.002 \mathrm{Mpc}^{-1}$ Δ_{R}^2 $2.441 \stackrel{+0.088}{-} 2.441 \stackrel{+0.088}{-} .0092 \times 10^{-9[17]}$ Reionization optical depth τ 0.066 ± 0.012 Image: Problem of the second optical depth τ 0.066 ± 0.012 Fixed parameterTotal density parameter ^[b] Ω_{tot} 1 Equation of state of dark energy w -1 Sum of three neutrino masses Σm_{v} $0.06 \frac{eV/c^{2[0][13]:40}}{2}$ Effective number of relativistic degrees of freedom N_{eff} $3.046^{[d][13]:47}$ Tensor/scalar ratior 0 Running of spectral index $d n_s / d \ln k$ 0 Hubble constant H_0 $67.74 \pm 0.46 \mathrm{km s^{-1} Mpc^{-1}}$ Baryon density parameter ^[b] Ω_{b $0.0486 \pm 0.0010^{[e]}$ Dark matter density parameter ^[b] Ω_{c $0.2589 \pm 0.0057^{[f]}$ Matter density parameter ^[b] Ω_{m 0.3089 ± 0.0062 Dark energy density parameter ^[b] Ω_{Λ} 0.6911 ± 0.0062 Critical density ρ_{crit} $(8.62 \pm 0.12) \times 10^{-27} \mathrm{kg/m}^{3/2}$ Fluctuation amplitude at $8h^{-1}$ Mpc σ_8 0.8159 ± 0.0086 Redshift at decoupling \mathcal{Z}_{\star} $1.089.00 \pm 0.23$	para-	Scalar spectral index	n _s	0.9667 ±0.0040				
Reionization optical depthr0.066 ± 0.012Total density parameter ^[b] Ω_{tot} 1Equation of state of dark energyw-1Sum of three neutrino masses Σm_v $0.06 \ eV/c^{2[c][13]:40}$ Effective number of relativistic degrees of freedom N_{eff} $3.046^{[d][13]:47}$ Tensor/scalar ratior0Running of spectral index $d n_s / d \ln k$ 0Baryon density parameter ^[b] Ω_b $0.0486 \pm 0.0010^{[e]}$ Dark matter density parameter ^[b] Ω_c $0.2589 \pm 0.0057^{[f]}$ Matter density parameter ^[b] Ω_{Λ} 0.6911 ± 0.0062 Dark matter density parameter ^[b] Ω_{Λ} 0.6911 ± 0.0062 Dark energy density parameter ^[b] Ω_{Λ} 0.8159 ± 0.0086 Fluctuation amplitude at $8h^{-1}$ Mpc σ_8 0.8159 ± 0.0086	meters	Curvature fluctuation amplitude, $k_0 = 0.002 \text{ Mpc}^{-1}$	Δ_R^2	$2.441 + 0.088 \\ -0.092 \times 10^{-9[17]}$				
Fixed parameterTotal density parameter Ω_{tot} 1Equation of state of dark energy w -1Sum of three neutrino masses Σm_v $0.06 \text{ eV/}c^{2[c][13]:40}$ Effective number of relativistic degrees of freedom N_{eff} $3.046^{[d][13]:47}$ Tensor/scalar ratior0Running of spectral index $d n_s / d \ln k$ 0Hubble constant H_0 $67.74 \pm 0.46 \text{ km s}^{-1} \text{ Mpc}^{-1}$ Baryon density parameter Ω_b $0.0486 \pm 0.0010^{[e]}$ Dark matter density parameter Ω_m 0.3089 ± 0.0062 Dark energy density parameter Ω_{n} 0.6911 ± 0.0062 Entransity energy density parameter ρ_{crit} $(8.62 \pm 0.12) \times 10^{-27} \text{ kg/m}^{3[c]}$ Fluctuation amplitude at $8h^{-1}$ Mpc σ_8 0.8159 ± 0.0086 Redshift at decoupling Z_* 1089.90 ± 0.23		Reionization optical depth	τ	0.066 ±0.012				
Fixed parameterEquation of state of dark energyw-1Sum of three neutrino masses Σm_v $0.06 \text{ eV/c}^{2[c][13]:40}$ Effective number of relativistic degrees of freedom N_{eff} $3.046^{[d][13]:47}$ Tensor/scalar ratior0Running of spectral index $d n_s / d \ln k$ 0Baryon density parameter ^[b] Ω_b $0.0486 \pm 0.0010^{[e]}$ Dark matter density parameter ^[b] Ω_c $0.2589 \pm 0.0057^{[f]}$ Matter density parameter ^[b] Ω_m 0.3089 ± 0.0062 Dark energy density parameter ^[b] Ω_{Λ} 0.6911 ± 0.0062 Fluctuation amplitude at $8h^{-1}$ Mpc σ_8 0.8159 ± 0.0086 Fedshift at decoupling Z_* $1.089.90 \pm 0.23$		Total density parameter ^[b]	Ω_{tot}	1				
Fixed parametersSum of three neutrino masses Σm_v $0.06 \text{ eV/c}^{2[C][13]:40}$ Effective number of relativistic degrees of freedom N_{eff} $3.046^{[d][13]:47}$ Tensor/scalar ratior0Running of spectral index $d n_s / d \ln k$ 0Hubble constant H_0 $67.74 \pm 0.46 \text{ km s}^{-1} \text{ Mpc}^{-1}$ Baryon density parameter ^[b] Ω_b $0.0486 \pm 0.0010^{[e]}$ Dark matter density parameter ^[b] Ω_c $0.2589 \pm 0.0057^{[f]}$ Matter density parameter ^[b] Ω_m 0.3089 ± 0.0062 Dark energy density parameter ^[b] Ω_{Λ} 0.6911 ± 0.0062 Entranameter density parameter ^[b] Ω_{Λ} 0.8159 ± 0.0086 Fluctuation amplitude at $8h^{-1}$ Mpc σ_8 0.8159 ± 0.028		Equation of state of dark energy	W	-1				
Part metersEffective number of relativistic degrees of freedom N_{eff} $3.046^{[d][13]:47}$ Tensor/scalar ratior0Running of spectral index $d n_s / d \ln k$ 0Hubble constant H_0 $67.74 \pm 0.46 \text{ km s}^{-1} \text{ Mpc}^{-1}$ Baryon density parameter ^[b] Ω_b $0.0486 \pm 0.0010^{[e]}$ Dark matter density parameter ^[b] Ω_c $0.2589 \pm 0.0057^{[f]}$ Matter density parameter ^[b] Ω_m 0.3089 ± 0.0062 Dark energy density parameter ^[b] Ω_{Λ} 0.6911 ± 0.0062 Critical density ρ_{crit} $(8.62 \pm 0.12) \times 10^{-27} \text{ kg/m}^{3[c]}$ Fluctuation amplitude at $8h^{-1}$ Mpc σ_8 0.8159 ± 0.0086 Redshift at decoupling Z_* $1.089.90 \pm 0.23$	Fixed para- meters	Sum of three neutrino masses	Σm _v	0.06 <u>eV/c^{2[c][13]:40}</u>				
Tensor/scalar ratior0Running of spectral indexd n_s / d ln k0Hubble constant H_0 $67.74 \pm 0.46 \mathrm{km s^{-1} Mpc^{-1}}$ Baryon density parameter ^[b] Ω_b $0.0486 \pm 0.0010^{[e]}$ Dark matter density parameter ^[b] Ω_c $0.2589 \pm 0.0057^{[f]}$ Matter density parameter ^[b] Ω_m 0.3089 ± 0.0062 Dark energy density parameter ^[b] Ω_{Λ} 0.6911 ± 0.0062 Critical density ρ_{crit} $(8.62 \pm 0.12) \times 10^{-27} \text{kg/m}^{3[c]}$ Fluctuation amplitude at $8h^{-1}$ Mpc σ_8 0.8159 ± 0.0086 Redshift at decoupling Z_* 1089.90 ± 0.23		Effective number of relativistic degrees of freedom	N _{eff}	3.046 ^{[d][13]:47}				
Running of spectral indexd $n_s / d \ln k$ 0Hubble constant H_0 $67.74 \pm 0.46 \text{ km s}^{-1} \text{ Mpc}^{-1}$ Baryon density parameter ^[b] Ω_b $0.0486 \pm 0.0010^{[e]}$ Dark matter density parameter ^[b] Ω_c $0.2589 \pm 0.0057^{[f]}$ Matter density parameter ^[b] Ω_m 0.3089 ± 0.0062 Dark energy density parameter ^[b] Ω_{Λ} 0.6911 ± 0.0062 Critical density ρ_{crit} $(8.62 \pm 0.12) \times 10^{-27} \text{ kg/m}^{3[c]}$ Fluctuation amplitude at $8h^{-1}$ Mpc σ_8 0.8159 ± 0.0086 Redshift at decoupling Z_* $1.089.90 \pm 0.23$		Tensor/scalar ratio	r	0				
Hubble constant H_0 $67.74 \pm 0.46 \text{ km s}^{-1} \text{ Mpc}^{-1}$ Baryon density parameter ^[b] Ω_b $0.0486 \pm 0.0010^{[e]}$ Dark matter density parameter ^[b] Ω_c $0.2589 \pm 0.0057^{[f]}$ Matter density parameter ^[b] Ω_m 0.3089 ± 0.0062 Dark energy density parameter ^[b] Ω_Λ 0.6911 ± 0.0062 Critical density ρ_{crit} $(8.62 \pm 0.12) \times 10^{-27} \text{ kg/m}^{3[c]}$ Fluctuation amplitude at $8h^{-1}$ Mpc σ_8 0.8159 ± 0.0086 Redshift at decoupling Z_* $1.089.90 \pm 0.23$		Running of spectral index	d <i>n_s I</i> d ln <i>k</i>	0				
Baryon density parameter Ω_b $0.0486 \pm 0.0010^{[e]}$ Dark matter density parameter Ω_c $0.2589 \pm 0.0057^{[f]}$ Matter density parameter Ω_m 0.3089 ± 0.0062 Dark energy density parameter Ω_Λ 0.6911 ± 0.0062 Critical density ρ_{crit} $(8.62 \pm 0.12) \times 10^{-27} \text{ kg/m}^{3[s]}$ Fluctuation amplitude at $8h^{-1}$ Mpc σ_8 0.8159 ± 0.0086 Redshift at decoupling Z_* $1.089.90 \pm 0.23$		Hubble constant	H ₀	$67.74 \pm 0.46 \text{ km s}^{-1} \text{Mpc}^{-1}$				
Calculated valuesDark matter density parameter [b] Ω_c $0.2589 \pm 0.0057^{[f]}$ Matter density parameter [b] Ω_m 0.3089 ± 0.0062 Dark energy density parameter [b] Ω_Λ 0.6911 ± 0.0062 Critical density ρ_{crit} $(8.62 \pm 0.12) \times 10^{-27} \text{ kg/m}^{3[s]}$ Fluctuation amplitude at $8h^{-1}$ Mpc σ_8 0.8159 ± 0.0086 Redshift at decoupling Z_* $1.089.90 \pm 0.23$		Baryon density parameter ^[b]	Ω _b	0.0486 ±0.0010 ^[e]				
Calculated lated valuesMatter density parameter[b] Ω_m 0.3089 ± 0.0062 Dark energy density parameter[b] Ω_{Λ} 0.6911 ± 0.0062 Critical density ρ_{crit} $(8.62 \pm 0.12) \times 10^{-27} \text{ kg/m}^{3}$ Fluctuation amplitude at $8h^{-1}$ Mpc σ_8 0.8159 ± 0.0086 Redshift at decoupling Z_* $1.089.90 \pm 0.23$		Dark matter density parameter ^[b]	Ω _c	$0.2589 \pm 0.0057^{[f]}$				
Calculated valuesDark energy density parameter ^[b] Ω_{Λ} 0.6911 ± 0.0062Critical density ρ_{crit} (8.62 ± 0.12) × 10 ⁻²⁷ kg/m ^{3[g]} Fluctuation amplitude at $8h^{-1}$ Mpc σ_8 0.8159 ± 0.0086Redshift at decoupling Z_* 1 089.90 ± 0.23		Matter density parameter ^[b]	Ω _m	0.3089 ±0.0062				
Iated valuesCritical density ρ_{crit} $(8.62 \pm 0.12) \times 10^{-27} \text{ kg/m}^{3}$ Fluctuation amplitude at $8h^{-1}$ Mpc σ_8 0.8159 ± 0.0086 Redshift at decoupling z_* $1.089.90 \pm 0.23$	Calcu- lated values	Dark energy density parameter ^[b]	Ω_{Λ}	0.6911 ±0.0062				
Fluctuation amplitude at $8h^{-1}$ Mpc σ_8 0.8159 ±0.0086Redshift at decoupling Z_* 1 089.90 ±0.23		Critical density	$ ho_{\rm crit}$	$(8.62 \pm 0.12) \times 10^{-27} \text{ kg/m}^{3[g]}$				
Redshift at decoupling Z_* 1 089.90 ± 0.23		Fluctuation amplitude at $8h^{-1}$ Mpc	σ_8	0.8159 ±0.0086				
		Redshift at decoupling	Ζ.	1 089.90 ±0.23				
Age at decoupling t_* 377 700 ± 3200 years ^[17]		Age at decoupling	t _*	377 700 ±3200 years ^[17]				
Redshift of reionization (with uniform prior) z_{re} $8.5 + 1.0 [18] - 1.1$		Redshift of reionization (with uniform prior)	z _{re}	8.5 ^{+1.0} _{-1.1} ^[18]				

Parameter values listed below are from the Planck Collaboration Cosmological parameters 68% confidence limits for the base Λ CDM model from Planck CMB power spectra, in combination with lensing reconstruction and external data (BAO+JLA+H_o).^[13] See also Planck (spacecraft).

Open Questions in Cosmology

- Nature of the Dark Energy
- Nature of the Dark Matter
- Initial conditions (Inflation Physics)
- Modifications to Gravity
- Formation and Evolution of Galaxies

Large ignorance on ~95% of Universe content !!

New Worlds, New Horizons in Astronomy and Astrophysics (Decadal Survey 2010)

Ground Projects – Large – in Rank Order

Large Synoptic Survey Telescope (LSST)

LSST is a multipurpose observatory that will explore the nature of dark energy and the behavior of dark matter and will robustly explore aspects of the time-variable universe that will certainly lead to new discoveries. LSST addresses a large number of the science questions highlighted in this report. An 8.4-meter optical telescope to be sited in Chile, LSST will image the entire available sky every 3 nights. TABLE ES.3 Ground: Recommended Activities—Large Scale (Priority Order)

	and near Earth chicata Snace Pr	oiects – La	rge – in Rank Order		
- NSF/DOE	phenomena, supernovas. Kuiper belt				
- Science late 2010s	matter, time-variable	low	(\$421M)	(\$28M)	1-29
1 I SST	Dark energy dark	Medium	\$465M	\$42M	7 20
Recommendation ^b	Science	Risk ^c	2012-2021)	Share)	Reference
NATIONAL	RESEARCH COUNCIL OF THE NATIONAL ACADEMIES	Technical	Appraisal of Costs Through Construction ^a (U.S. Federal Share	Appraisal of Annual Operations Costs ^d (U.S. Federal	Page

Wide Field Infrared Survey Telescope (WFIRST)

A 1.5-meter wide-field-of-view near-infrared-imaging and low-resolution-spectroscopy telescope, WFIRST will settle fundamental questions about the nature of dark energy, the discovery of which was one of the greatest achievements of U.S. telescopes in recent years. It will employ three distinct techniques—measurements of weak gravitational lensing, supernova distances, and baryon acoustic oscillations—to determine the effect of dark energy on the evolution of the universe. An equally

TABLE ES.5 Space: Recommended Activities—Large-Scale (Priority Order)

				Appraisal of Costs ^a			
	Recommendation	Launch Date ^b	Science	Technical Risk ^c	Total (U.S. share)	U.S. share 2012-2021	Page Reference
	1. WEIRST - NASA/DOE	2020	Dark energy, exoplanets, and infrared survey-	Medium low	\$1.6B	\$1.6B	7-17
Peudid	collaboration	INF	science				R Scaramol

DE as TOP priority both for Ground and Space also across the Atlantic

European Astroparticle Physics Strategy APPEC 2017-2026

9. Dark Energy

Together with Dark Matter, Dark Energy – the hypothetical form of energy behind the Universe's accelerated expansion - constitutes the leastunderstood component of the cosmos. It is studied via large galaxy-survey campaigns (both satellite-based and ground-based) that combine spectroscopic, photometric and weak-lensing techniques to reconstruct the growth of cosmic

structures.

APPEC supports the forthcoming ESA Euclid satellite mission, which will establish clear European leadership in space-based Dark Energy research. Because of their complementarity to Euclid, APPEC encourages continued European participation in the US-led DESI and LSST ground-based research projects. To benefit fully from the combined power of satellite-based and ground-based experiments, the exchange of data is essential.

In a number of countries, the scope of astroparticle physics has recently been expanded to include experiments targeted at a better, more detailed understanding of Dark Energy and the CMB. These are important topics in their own right, but each also provides independent and often complementary information on subjects such as neutrino properties and the overall composition and evolution of our Universe. With upcoming Dark Energy facilities on the ground (DESI and LSST) and in space (Euclid) offering performance improvements of an order of magnitude compared with their precursors, and with next-generation CMB research directed specifically at the discovery of B-mode polarisation – the tell-tale signal of the period of inflation in the very early Universe - ground-breaking discoveries are anticipated.

Giga structures/years/pc/samples....

Observed with a mini structure: mirror $\sim 1.2 \text{ m} \varnothing$

1. Why 2. How Dark Energy & Dark Matter (Cosmology) ; Legacy science
 Space imaging (morphology & NIR) + Spectra: Grav. Lensing & Clustering
 2023-2029+ (6y mission +)

3. When

Main Scientific Objectives

Understand the nature of Dark Energy and Dark Matter by:

Totat (in unding margin) agenzia spaziale

- Reach a dark energy FoM > 400 using only weak lensing and galaxy clustering; this roughly corresponds to 1 sigma errors on w_p and w_a of 0.02 and 0.1, respectively.
- Measure γ , the exponent of the growth factor, with a 1 sigma precision of < 0.02, sufficient to distinguish General Relativity and a wide range of modified-gravity theories
- Test the Cold Dark Matter paradigm for hierachical structure formation, and measure the sum of the neutrino masses with a 1 sigma precision better than 0.03eV.
- Constrain n_s , the spectral index of primordial power spectrum, to percent accuracy when combined with Planck, and to probe inflation models by measuring the non-Gaussianity of initial conditions parameterised by $f_{\rm NL}$ to a 1 sigma precision of ~2.

		SURVI	EYS				
	Area (deg2)		Description				
Wide Survey	15,000 (required) 20,000 (goal)		Step and stare with 4 dither pointings per step.				
Deep Survey	40		In at leas	st 2 patches	of > 10 deg	g^2	
			2 magnitud	es deeper that	an wide su	rvey	
		PAYLO	AD				
Telescope		1.2 m Korsc	ch, 3 mirror anast	igmat, f=24.:	5 m		
Instrument	VIS			NISP			
Field-of-View	$0.787 \times 0.709 \text{ deg}^2$		0.7	63×0.722 de	g^2		
Capability	Visual Imaging	NIR	R Imaging Photon	netry	NIR	Spectroscopy	
Wavelength range	550– 900 nm	Y (920- 1146nm),	J (1146-1372 nm)	H (1372- 2000nm)	1100-2	000 nm	
Sensitivity	24.5 mag 10σ extended source	24 mag 5σ point source	24 mag 5σ point source	24 mag 5σ point source	3 10 ⁻¹⁶ 3.5σ flux	erg cm-2 s-1 unresolved line	
Detector Technology	36 arrays 4k×4k CCD	16 arrays 2k×2k NIR sensitive HgCdTe detectors					
Pixel Size Spectral resolution	0.1 arcsec	$\begin{array}{c} 0.3 \text{ arcsec} \\ R=250 \end{array}$				sec	
		SPACEC	RAFT				
Launcher	Soyuz ST-2.1 B from	Kourou	A CARENCE				
Orbit	Large Sun-Earth Lagr	ange point 2 (S	SEL2), free insert	tion orbit			
Pointing	Pointing 25 mas relative pointing error over one dither duration 30 arcsec absolute pointing error						
Observation mode	Step and stare, 4 dithe	r frames per fi	ield, VIS and NIS	SP common I	FoV = 0.54	deg ²	
Lifetime	7 years						
Operations	4 hours per day contact, more than one groundstation to cope with seasonal visibility variations;						
Communications maximum science data rate of 850 Gbit/day downlink in K band (26GHz), steerable H						teerable HGA	
	E	Budgets and P	erformance				
	the second second	1900 1900	Mass (kg) Nominal Power (W)			l Power (W)	
industry		TAS	Astriu	m TA	AS	Astrium	
Payload Module	897	696	41	0	496		
Service Module		786	835	64	7	692	
Propelles and a second second			232	1			
Adapter mass Harne	ss and PDCU losses now	ěr 70 –	90	65	and the second	108	

2160

1368

1690

All data you need to know (Red Book, some changes)

Wide Area (>10⁴ sq deg)
Wide Field (FoV > 0.5 sq deg)

Opt. imaging
NIR photom
NIR slitless

Two instruments: VIS: optical imager & NISP: NIR imager + grisms

- <u>Unique</u> legacy survey: 2 billion galaxies imaged in optical/NIR to mag >24 Million NIR galaxy spectra, full extragalactic sky coverage, Galactic sources
- Unique database for various fields in astronomy: galaxy evolution, search for high-z objects, clusters, strong lensing, brown dwarfs, exo-planets, etc
- Synergies with other facilities: JWST, Planck, Erosita, GAIA, DES, Pan-STARSS, LSST, E-ELT etc (e.g. to do NIR from the ground would take several x 10³ yr)
- All data publicly available through a legacy archive

Enormous database to harvest

Euclid in context

VISTA		SASIR	Euclid	
Wide survey 680 years		66 years	5 years	
Deep survey	72 years	7 years	"5 years"	

Data Release schedule

Public data releases:

Two kind:

Q's = small area prerelease for the community to get acquainted

European Space Agency

DR = data release (three DR of increasing areas: early -2500-, intermediate -7500-, final -15000 sq degs)

Q1: 14 months after start of the nominal mission — data released: one visit on the deep fields [50 sq deg]

DR1: one year after Q1 — data released: 2500 sq deg

Italy (ASI, INAF, INFN) contributes to the instruments (electronics and mechanical parts), leads the Ground Segment and the Survey, coordinates several Science Working Groups, two members in the ESA Science Team.

~300 italian scientists are members of the EC

Italy in Euclid

L. Stanco

The ubiquitous symbol.. (hex U+039B)

F + J = F' = S by modifying the laws with new parts, J, (S sources unchanged)

eucli

FoM = Figure of Merit

An important step in the field was done in a report by the U.S. Dark Energy Task Force [DETF], which defined a hierarchy of future experiments, increasingly more precise (stages I—IV) [Albrecht et al 2006]

In the report a simple metric was proposed to rank the future experiments, that is the inverse of the area enclosing the 95% c.l. in the $w_0 - w_a$ plane.

Table 2: Best-fit values and 1σ uncertainties for the cosmological free parameters in each model and data set.

Model	Data set	$\Omega_{M,0}$	$\Omega_{\Lambda,0}$	w_0	Wa
Flat ACDM	SNe+QSO	$0.295^{+0.013}_{-0.012}$			
	BAO	$0.373^{+0.056}_{-0.048}$			
	SNe+QSO+BAO	0.300 ± 0.012			
Non-flat ACDM	SNe+QSO	0.504 ± 0.029	$1.107\substack{+0.051\\-0.052}$		
	BAO	$0.376^{+0.057}_{-0.049}$	$0.638^{+0.071}_{-0.079}$		
	SNe+QSO+BAO	$0.364^{+0.022}_{-0.021}$	0.829 ± 0.035		
Flat wCDM	SNe+QSO	$0.403^{+0.022}_{-0.024}$		$-1.494^{+0.132}_{-0.143}$	
	BAO	$0.381^{+0.057}_{-0.050}$		$-1.049\substack{+0.098\\-0.116}$	
	SNe+QSO+BAO	$0.369^{+0.022}_{-0.023}$		$-1.283^{+0.094}_{-0.108}$	
Non-flat <i>w</i> CDM	SNe+QSO	$0.280^{+0.041}_{-0.037}$	$1.662^{+0.041}_{-0.048}$	$-0.667^{+0.024}_{-0.027}$	
	BAO	$0.301\substack{+0.080\\-0.072}$	$0.463^{+0.072}_{-0.058}$	$-2.850^{+1.459}_{-1.441}$	
	SNe+QSO+BAO	$0.224^{+0.018}_{-0.017}$	$1.667^{+0.040}_{-0.047}$	$-0.626\substack{+0.012\\-0.013}$	
CPL	SNe+QSO	$0.447^{+0.023}_{-0.027}$		$-1.267^{+0.196}_{-0.191}$	$-3.771^{+2.113}_{-2.496}$
	BAO	$0.420^{+0.073}_{-0.070}$		$-0.821^{+0.469}_{-0.349}$	$-1.269^{+1.835}_{-2.608}$
	SNe+QSO+BAO	$0.354^{+0.032}_{-0.030}$		$-1.323\substack{+0.103\\-0.112}$	$0.745^{+0.483}_{-0.974}$
JBP	SNe+QSO	$0.441^{+0.025}_{-0.028}$		$-1.250\substack{+0.223\\-0.209}$	$-4.282^{+2.680}_{-3.283}$
	BAO	$0.384^{+0.103}_{-0.098}$		$-1.091\substack{+0.923\\-0.727}$	$0.235^{+4.922}_{-6.612}$
	SNe+QSO+BAO	$0.354^{+0.032}_{-0.030}$		-1.371 ± 0.141	$1.127^{+1.293}_{-1.547}$
Exponential	SNe+QSO	$0.395^{+0.023}_{-0.026}$		$-1.481\substack{+0.141\\-0.147}$	
	BAO	$0.371\substack{+0.058\\-0.051}$		$-1.067\substack{+0.102\\-0.119}$	
	SNe+QSO+BAO	$0.359^{+0.023}_{-0.024}$		$-1.271\substack{+0.092\\-0.107}$	
Rational	SNe+QSO	$0.452^{+0.022}_{-0.025}$		$-1.316\substack{+0.172\\-0.168}$	$-2.654^{+1.329}_{-1.626}$
	BAO	$0.410^{+0.086}_{-0.081}$		$-0.930^{+0.464}_{-0.333}$	$-0.423^{+1.064}_{-1.671}$
	SNe+QSO+BAO	$0.307\substack{+0.044\\-0.055}$		$-1.303\substack{+0.115\\-0.106}$	$1.010^{+0.152}_{-0.466}$

A legion of papers combining different probes/ samples, myriads of plots with isocontours..

HUNTING DOWN HORIZON-SCALE EFFECTS WITH MULTI-WAVELENGTH SURVEYS José Fonseca,^{1*} Stefano Camera,² Mário G. Santos^{1,3,4}, Roy Maartens^{1,5}

Multitracer techniques useful and informative

Measuring cosmic velocities with 21 cm intensity mapping and galaxy redshift survey cross-correlation dipoles

Alex Hall^{1, *} and Camille Bonvin^{2, †}

$$\begin{split} C_{AB}^{CD}(d,d') &= \frac{1}{V} \int \frac{k^2 \mathrm{d}k}{2\pi^2} \sum_{\ell,\ell'} i^{\ell'-\ell} w_\ell w_{\ell'} j_\ell(kd) j_\ell(kd') \sum_{L,L'} G_{\ell'\ell}^{L'L} \left[P_L^{AC}(k) P_{L'}^{DB}(k) + (-1)^{\ell'} P_L^{AD}(k) P_{L'}^{CB}(k) \right] \\ &+ \int \frac{k^2 \mathrm{d}k}{2\pi^2} \sum_{\ell,\ell'} i^{\ell'-\ell} w_\ell w_{\ell'} j_\ell(kd) j_\ell(kd') \sum_L \begin{pmatrix} L & \ell & \ell' \\ 0 & 0 & 0 \end{pmatrix}^2 \left[\frac{\delta_{AC}^K}{\bar{n}_A V} P_L^{DB}(k) + \frac{\delta_{BD}^K}{\bar{n}_B V} P_L^{CA}(k) \right] \\ &+ (-1)^{\ell'} \frac{\delta_{AD}^K}{\bar{n}_A V} P_L^{BC}(k) + (-1)^{\ell'} \frac{\delta_{BC}^K}{\bar{n}_B V} P_L^{DA}(k) \right] \\ &+ \frac{\delta_{AC}^K \delta_{BD}^K}{\bar{n}_A \bar{n}_B V} \frac{\delta_{d,d'}^K}{4\pi d^2 L_p} \sum_\ell \frac{w_\ell^2}{2\ell + 1} + \frac{\delta_{BC}^K \delta_{AD}^K}{\bar{n}_A \bar{n}_B V} \frac{\delta_{d,d'}^K}{4\pi d^2 L_p} \sum_\ell (-1)^\ell \frac{w_\ell^2}{2\ell + 1}. \end{split}$$

INFN

the estimator noise. The quantity $G_{\ell'\ell}^{L'L}$ arising from the integral of four Legendre polynomials is expressible in terms of Wigner 3j symbols as

$$G_{\ell'\ell}^{L'L} \equiv \sum_{L''} (2L''+1) \begin{pmatrix} \ell & \ell' & L'' \\ 0 & 0 & 0 \end{pmatrix}^2 \begin{pmatrix} L & L' & L'' \\ 0 & 0 & 0 \end{pmatrix}^2,$$
(18)

Statistics, + statistics, and even more statistics....

what about Physics?

(17)

Recall a few basics

$$H^{2}(a) \equiv \left(\frac{\dot{a}}{a}\right)^{2} = H_{0}^{2} \left[\Omega_{m}a^{-3} + \Omega_{r}a^{-4} + \Omega_{k}a^{-2} + \Omega_{X}a^{-3(1+w)}\right]$$

Evolution governed by components: $H(z) \Leftrightarrow \Omega_X$, w

$$H^{2}(a) = H_{0}^{2} \left[\Omega_{R} a^{-4} + \Omega_{M} a^{-3} + \Omega_{k} a^{-2} + \Omega_{DE} \exp \left\{ 3 \int_{a}^{1} \frac{da'}{a'} \left[1 + w(a') \right] \right\} \right]$$

Ellipses: uncertainty in parameters via Fisher matrix. An useful <u>approximation</u> (curse of dimensionality; also different definitions). Importance of <u>Priors</u> Usually use Figure of Merit= 1/Area $FoM= 1/(\Delta w_0 \ge \Delta w_a)$ a=(1+z)⁻¹ expansion factor δ = density fluctuation P(k) = power spectrum of $\delta(\mathbf{x}, z)$ w = p/Q, γ =growth index w(z)=w₀+w_a (1-a) $f_{GR}(z) \equiv \frac{d \ln G_{GR}}{d \ln a} \approx [\Omega_m(z)]^{\gamma}$ A: w₀= -1, w_a = 0, $\gamma \sim 0.55$

Euclid will challenge all sectors of Dark Energy: W_p and W_a with respectively (no prior)

Dark Matter: test of CDM paradigm, precision of 0.04eV on sum of neutrino masses (with Planck)

Initial Conditions: constrain shape of primordial power spectrum, primordial non-gaussianity

Gravity: test GR by reaching a precision of 2% on the growth exponent γ ($d \ln \delta_m / d \ln a \propto \Omega_m \gamma$)

Uncover new physics and map LSS at 0<z<2: Low redshift counterpart to CMB surveys

Two instruments: VIS: optical imager NISP: NIR imager + grisms

Ground Segment

agenzia spaziale italiana

Euclid – Payload Module - hardware

Euclid: small (1m) but powerful telescope Built and almost assembled, launch in ~18 months, 6y mission

Flight model

October 2021 at Thales—Alenia in Turin

A370 ACS w.r.t. HST will lose a factor of ~2 in resolution, but get all xgal sky!

INFN

agenzia spaziale italiana

EUCLID Mission

- Launcher: Soyuz ST2-1B from Kourou
- Direct injection into tranfer orbit
 - Transfer time: 30 days
 - Transfer orbit inclination: 5.3 deg
- Launch vehicle capacity:
 - 2160 kg (incl. adapter)
 - 3.86 m diameter fairing
- Launch \approx 2023

esa

• Mission duration: 6 years

• AA comprised between -8 and +8 degrees (EUCL-SYS-MIS-REQ-060);

The previous attitude domain will be used for the survey of the sky, but two different domains have been introduced for non-scientific objectives, in particular:

- Slightly increasing the maximum achievable SAA (from 121 to 136 deg) would make possible to increase significantly the geometrical efficiency for the execution of AV maneuver, in particular for the Transfer Conection Maneuver #1 (TOM#7, see [RD-2] CONDOGY
- details): **HE CONTINUE** Allowing the S/C to arrive at a SAA of 45 deg, it would be possible to litum
- side of the telescope baffle, with the objective to heat up that zone for decontamination purposes (i.e. ice removal).

step

spacecraft

STEP &

STARE

rotation

spacecraft

tilt

step 2

step 3

55 lecture-18 Nov 2022

The core: ~0.5 sq/degs, VIS & NIR Focal Planes, lots of pixels !!!

The geometrical Field of View is the sky area limited by the contour of the focal plane array of a given instrument (VIS or NISP) projected onto the sky. The contour is defined by the first pixel line or columns of the detectors on the edge of the FPA as indicated on the next figure.

INFŃ

এশ

NIR array

Cosmic rays

M. Cropper, A. Ealet, K. Jahnke, S. Niemi

Anomalies detection performances

Detection of cosmics:

Euclid End to Enc. woese C Simulations (EE2E). Ref. Moreover: Charge Transfer Inefficiency modifies shapes! need to reconstruct

Trails

Euclid End to End

Figure 34 The degradation due to CTI on measurements of flux, astrometry, size and ellipticity. The curves show the response to different trap species of a bright star (left panel) or a faint galaxy (right panels), if there were an (arbitrarily chosen) trap density of 1 trap per pixel. The x axis is the release time of the charge trap species, in multiples of the CCD readout clock speed such that a temporal delay of one clock cycle is equivalent to a spatial displacement of 1 pixel. The histograms in the bottom panels show the population of trap species in CCD204 detectors as a function of their characteristic release time in the same units, for parallel readout (left panel) and serial readout (right panel).

gure 35 Left: Real image from the Hubble Space Telescope, eight years after launch, showing charge alling due to CTI. Right: The same image after correction using software like that planned for Euclid^{ky} The garithmic colour scale in the images has been chosen to enhance the visibility of the charge trailing. After one extra (forward) readout at the cosmic ray event trails correctly remain in the right hand image.

unavailable

(a)

EUCL-UR2-EUC-PL-00

Ref.

FoV X

* * *

Exit pupil amplitude & phase: low Zernike-order phase variations *** ***

L. Miller

polarisation and object counts in deep fields

- Predicted polarisation for 3 deep fields smoothed with 2 degree FWHM, plus DES object counts near SEP/ LMC
- Polarisation noise <0.05 percent on these maps
- Need to avoid dust in all regions
- Need to avoid too high object counts (yellow/ green regions on DES plot)
 < 40/arcmin² (i<23)
- May need careful field selection and more accurate in-field stellar polarisation observations

Euclid calibration WG, Mar 2018

EDF-S "temp" & EDF-F & NEP seem OK (? TBD)

INFŃ

ଏ୬

Euto de contrate d

Model systematic effects (holes, boundaries, varying S/N etc)

Weak Lensing (VIS, WLSWG, OU-SHE)

Shear field

True two-point correlation function C_{ij} will be affected by additive bias σ^2_{sys} and multiplicative bias M

(%) Hif

100

R. Scaramella-AASS lecture-18 Nov 2022

104

1000

Wavenumber 1

EUCLID Survey(s)

A scheme of the complex inter-relationships of the Euclid Survey produced at the start of the study. After a Commissioning phase lasting one month, the First Light phase is now called the Performance Verification phase, lasting two months. Both those phases take place before the start of the core mission, lasting six years. The examples shown for additional surveys are now likely to take place during a possible extension of the mission. However, over the years the main items have kept stable as shown, with an additional arrow connecting VIS to the Deep Survey

Highly complex since start

3 kinds of data at once:

- VIS imaging
- Y, J, H photometry
- red grism slitless spectra

Lots of constraints (changed over time)

In 6 years need to do

- calibrations
- auxiliary fields
- deep fields
- wide survey

 $arcsec^{-2}$)

 \propto

2

 $Log(erg cm^{-2})$

agenzia spaz

italiana

Zodiacal Light

Figure 1. Upper panel. The spectrum of the zodiacal background light at the NEP compared to broad-band anies observations from the ground and HST observations. The circles are data at 0.450, 0.606 and $0.814 \,\mu m$, respectively from the HDF; the square is Leinert et al. (1998) measure at 0.5 µm, and the triangles are measures from COBE/DIRBE at 1.25 and 2.2 µm. Lower panel. The comparison between the intensity of the three adopted normalizations of the zodiacal backgroud light. The lowest normalization is the one relative to the NEP, and it is shown together with the broad-band data points discussed above.

II. SUILUIIUIIU-AASS IV

euclid

INFN

euclid

M. Maris: time dependence of zodiacal background

