Einstein Telescope

V. Fafone

PhD A.A.S.S. - XXXVII cycle AA21-22

GWs in a nutshell

Gravitational waves are dynamic fluctuations in the fabric of space-time

3) Linearize metric in weak field approximation

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \qquad \left| h_{\mu\nu} \right| << 1$$

Minkowsky flat space

Small perturbation (i.e. the GWs)

4) Choose a gauge (Lorenz) and put yourself far from the source

Solutions are transverse plane waves, that **in GR** move at the speed of light and have two polarization states, just like EM waves.

1) Start from the Einstein equations

$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) h_{\mu\nu} = 0$$

$$h_{\mu\nu} = h_+(t-z/c) + h_x(t-z/c)$$

GWs in a nutshell

In GR, GWs are described by a rank 2 tensor, thus the two polarization states are rotated by 45° wrt each other.

In the vicinity of the source, the GW tensor $h_{\mu\nu}$ can be written as a multipole expansion of the matter energy-momentum tensor:

- mass conservation \rightarrow no monopole radiation;
- momentum conservation → no dipole emission;
- The first nonzero contribution is the **quadrupole** term

Dipole mass moment ~ sum(m_ix_i) \rightarrow d(m_ix_i)/dt ~ p \rightarrow d²(m_ix_i)/dt² ~ dp/dt =0

GWs are emitted by time-varying quadrupole mass moment

$$h_{\mu\nu}(t) = \frac{2G}{rc^4} \ddot{Q}_{\mu\nu}(t - \frac{r}{c})$$

$$Q_{\mu\nu} = \int \rho(x_{\mu} x_{\nu} - \frac{1}{3}r^2 \delta_{\mu\nu}) d^3x$$

A different window on the universe

E.M. radiation	Gravitational radiation
Primary emitters: charged elementary particles, mainly electrons	Emitted by cumulative mass and momentum of entire systems
Typically emitted in small regions, with short wavelengths (because of overall charge neutrality)	Long wavelengths
Conveys direct information about the physical conditions of small portions of the astronomical sources	Conveys direct information about large-scale regions
Couples strongly to charges \rightarrow easy to detect but also easily scattered or absorbed by material between us and the source	Couples extremely weakly to matter → very hard to detect but also able to travel to us substantially unaffected by intervening matter, even from the earliest moments of the Big Bang

Given that 96% of the mass-energy of the universe carries no charge, GWs provide us with our first opportunity to observe directly a major part of the universe. It might turn out to be as complex and interesting as the charged minor component, the part that we call "normal" matter.

Can we generate GWs?

Power emitted by a mass M and size R oscillating at frequency $\omega \sim v/R$:

$$P = \frac{G}{5c^5} \langle \vec{Q}^{\mu\nu} \vec{Q}_{\mu\nu} \rangle \approx \frac{GM^2 \nu^6}{R^2 c^5} \qquad \qquad Q \approx MR^2 \sin \omega t$$

M=1000 tons, steel rotor, $f = 4 \text{ Hz} \rightarrow P = 10^{-30} \text{ W}$; Einstein: "... a practically vanishing value..."

No Hertz experiment for GWs!

Efficient sources of GW must have a large mass and be asymmetric, compact and fast: strong field, highly relativistic systems!

This means mostly binary systems made of Black Holes and Neutron Stars

GW sources

AEI, CCT, LSU

background of cosmological origin (inflation)

NASA/WMAP Science Team

Stochastic

Compact binary

systems (NSNS,

NSBH, BHBH)

Core Collapse Supernovae

Spinning neutron stars (Pulsars)

Unmodeled

Well modeled

The Gravitational Wave Spectrum

Can we detect GWs?

The gravitational wave produces a time dependent strain of space. The deformation of a ring of test particles due to a gravitational wave propagating in the direction normal to the plane of the ring has the pattern shown below:

$$\delta\xi^i = \frac{1}{2}h_k^i\xi^k$$

In any realistic case, wave is so weak that the changes $\delta \xi$ are very small compared to the original distance ξ . Some order of magnitude: Typically, *h* is O(10⁻¹⁹-10⁻²²); ξ is O(10³ m) $\rightarrow \delta \xi$ is **O(10⁻¹⁶-10⁻¹⁹) m** (a proton is O(10⁻¹⁵) m)

Troublesome history

Einstein predicted GWs in 1916 ... but then doubted their existence for the rest of his life.

The controversy lasted four decades, until the Chapel Hill Conference in 1957.

Felix Pirani solved the problem of the reality of gravitational waves, showing that gravitational waves must have physical reality, as they carry energy, and you could invent a (thought) experiment that could detect them.

Line ζ of a free particle to that of a heighboring similar particle. V is the 4-velocity of the first particle, and τ the proper time along ζ . If now one introduces an orthonormal frame on ζ , v^{μ} being the timelike vector of the frame, and assumes that the frame is parallelly propagated along ζ (which insures that an observer using this frame will see things in as Newtonian a way as possible) then the equation of geodesic deviation (1) becomes

$$\frac{d^2\eta^a}{d\tau^2} + R^a_{obo} \eta^b = 0 \qquad (a,b = 1,2,3)$$
(2)

Here η^a are the physical components of the infinitesimal displacement and $R^a_{\ obo}$ some of the physical components of the Riemann tensor, referred to the orthonormal frame.

By measurements of the relative accelerations of several different pairs of particles, one may obtain full details about the Riemann tensor. One can thus very easily imagine an experiment for measuring the physical components of the Riemann tensor.

Interferometers as GW detectors

In Pirani's papers: "It is assumed that an observer, by the use of light signals or otherwise, determine the coordinates of a neighboring particle in his local Cartesian coordinate system"

Interferometers can make the job!

Interferometri per misurare le onde gravitazionali

V. Fafone - Einstein Telescope

Interferometers as GW detectors

- First proposed by Gertsenshtein and Pustovoit Sov . Phys. JETP 878 16, 433 (1962) 879
- First built by Forward at Hughes Research Laboratories G. E. Moss, L.
 R. Miller, and R. L. Forward, Appl. Opt. 880 10, 2495 (1971)
- First study of the noise and performance of such detectors R. Weiss, *Electromagnetically coupled broadband gravitational antenna*, Tech. Rep. (MIT, **1972**) Quarterly report of the Research Laboratory for Electronics. https://dcc.ligo.org/LIGO P720002/public

1.2					
SOVIET PHYSICS JETP	VOLUME 16	, NUMBER	2	FEBR	UARY, 196
				· .	
ON THE DETECTION OF LOW FR	EQUENCY GRA	WITATIONA	L WAVES		
M. E. GERTSENSHTEIN and V. I. PUST	rovoĭr	1		`.	·•
Submitted to JETP editor March	3, 1962		e	,	
J. Exptl. Theoret: Phys: (U.S.S.R	.) 43, 605-607 (À	ugust, 1962)		·.,	

It is shown that the sensitivity of the electromechanical experiments for detecting gravitational waves by means of piezocrystals is ten orders of magnitude worse than that estimated by Weber. ^[1] In the low frequency range it should be possible to detect gravitational waves by the shift of the bands in an optical interferometer. The sensitivity of this method is investigated.

V. Fafone - Einstein Telescope

We have come a long way

688 Sitzung der physikalisch-mathematischen Klasse vom 22. Juni 1916

Näherungsweise Integration der Feldgleichungen der Gravitation.

Von A. EINSTEIN.

Bei der Behandlung der meisten speziellen (nicht prinzipiellen) Probleme auf dem Gebiete der Gravitationstheorie kann man sich damit begnügen, die g_{s*} in erster Näherung zu berechnen. Dabei bedient man sich mit Vorteil der imaginären Zeitvariable $x_i = it$ aus denselben Gründen wis in der speziellen Relativitätstheorie. Unter verster Näherung« ist dabei verstanden, daß die durch die Gleichung

 $g_{**} = -\delta_{*} + \gamma_{**}$

definierten Größen γ_{**} , welche linearen orthogo gegenüber Tensorcharakter besitzen, gegen 1 handelt werden können, deren Quadrate und Pr Potenzen vernachlässigt werden dürfen. Dabei i je nachdem $\mu = r$ oder $\mu \models r$.

Wir werden zeigen, daß diese 7, in am werden können wie die retardierten Potentia Daraus folgt dann zunächst, daß sich die Grav geschwindigkeit ausbreiten. Wir werden im gemeine Lösung die Gravitationswellen und o untersuchen. Es hat sich gezeigt, daß die v Wahl des Bezugssystems gemäß der Bedingun die Berechnung der Felder in erster Näherun leh wurde hierauf aufmerksam durch eine b Astronomen nr Strrze, der fand, daß man d des Bezugssystems zu einem einfacheren Aus feldes eines ruhenden Massenpunktes gelangen l gegeben hatte¹. Ich stütze mich daher im fi mein invarianten Feldgleichungen.

¹ Sitzungaber, XLVII, 1915, S. 833.

The GW detectors network

Sky localization

Detector Networks 2015-2025

Sky location reconstructed through the time of arrival of GW radiation at the different detector sites, as well as the relative amplitude and phase of the GWs in different detectors.

Two interferometers can only determine an **annulus** in the sky.

Baselines in light travel

time (ms)

Sky localization

The Observing Runs

- Three observing runs performed so far:
 - O1: September 12th 2015 to January 12th 2016;
 - O2: November 30th 2016 to August 25th 2017;
 - 03: April 1st 2019 to March 27th 2020.
- Each observing run has been followed/proceeded by an upgrade and commissioning phase;
- Events scale as expected according to sensitivity improvement

- <R> average astrophysical rate
- V volume of the universe probed \rightarrow (Range)³
- T coincident observing time

* Estimated ranges from LVK Observing Scenario: Living Reviews in Relativity 23, 3 (2020)

• 01:

* Estimated ranges from LVK Observing Scenario: Living Reviews in Relativity 23, 3 (2020)

* Estimated ranges from LVK Observing Scenario: Living Reviews in Relativity 23, 3 (2020)

O3 Open Public Alerts

LIGO-Virgo data are jointly analyzed in real-time

- Modelled (compact binary coalescences) and unmodelled searches («bursts»)
- Detect and localize potential transient GW signals

When a significant-enough candidate is found

- False-alarm rate lower than 1 / O(few months)
- Alert sent to astronomers in order to search for counterparts through NASA's Gamma-ray Coordinates Network (GCN)

- Expert vetting
- > Public alerts can be retracted

O3 Open Public Alerts

- Localization: 3D map for follow-up
- Classification: probability that the source belongs to five categories

Gravitational Waves Open Science Center

Gravitational Wave Open Science Center

A Data - Software - Online Tools - About GWOSC -

The Gravitational Wave Open Science Center provides data from gravitational-wave observatories, along with access to tutorials and software tools.

(Credits: 1. Giaime)

Vinto detector. Italy

(Credits: Virgo Collaboration

Hanford Observatory, Washington (Credits: C. Gray)

- A Start with a Learning Path
- Browse the Event Portal
- Download data
- 🔀 Join the email list
- 🔊 Open Data Workshops
- Attend Office Hours

- All O3 (along with O1 and O2) data available online @ <u>https://www.gw-openscience.org/</u>
- 1-hour time-series data around each published event (prior to full data release)
- Also contains:
 - Pointers to analysis software tools;
 - Materials from Open Data Workshops;
 - Online tutorials.

https://www.ligo.org/detections/O3bcatalog/files/gwmerger-poster-white-md.jpg

V. Fafone - Einstein Telescope

Some highlights on what we have learned

Astrophysics

- GW170817 solved the long-standing problem of the origin of (at least some) short GRB
- NS-NS mergers are a site for the formation of some of the heaviest elements through r-process nucleosynthesis
- BH-BH binaries exist and merge within the age of the Universe
- discovered a new population of stellar-mass BHs, much heavier than those detected through X-ray binaries

Some highlights on what we have learned

Cosmology/fundamental physics

- speed of GWs equal to speed of light (1:10¹⁵)
- first measurement of the Hubble constant with GWs
- the tail of the waveform of GW150914 consistent with the prediction from General Relativity for the quasi-normal modes of the final BH
- deviations from GR (graviton mass, post-Newtonian coefficients, modified dispersion relations, etc.) could be tested and bounded

What made this results possible?

Fundamental and technical noise sources limit the sensitivity of our instruments

What made this results possible?

Virgo sensitivity: noise budget

Virgo sensitivity: O2 vs O3

The path towards O4 and O5

- Shutdown period between O3 and O4 to upgrade the current detectors →
 Advanced+ detectors
- Four detectors online in O4: 2 LIGOs, Virgo and KAGRA

AdV+: sensitivity goal

- Phase I: reduce quantum noise, hit against thermal noise
- Phase II: push down the thermal noise wall

Perspectives

BNS

--- NSBH ----- BBH O3/HLV

O3/HLVK

O4/HLVK

106

Cumulative f 500

0.00

TERRET

1

THE REAL PROPERTY IN

100

90% credible comoving volume (103 Mpc3)

104

		01	O 2	03	O4	05
BNS Range (Mpc) $1.4M_{\odot} + 1.4M_{\odot}$	aLIGO AdV KAGRA	80 - -	100 30	110–130 50 8–25	160 - 190 90 - 120 25 - 130	330 150 – 260 130+
BBH Range (Mpc) $30M_{\odot} + 30M_{\odot}$	aLIGO AdV KAGRA	740 - -	910 270	990–1200 500 80–260	$1400 - 1600 \\ 860 - 1100 \\ 260 - 1200$	2500 1300-2100 1200+
NSBH Range (Mpc) $1.4M_{\odot} + 10M_{\odot}$	aLIGO AdV KAGRA	140 - -	180 50 -	190–240 90 15–45	300 - 330 170 - 220 45 - 290	590 270–480 290+
Burst Range (Mpc) $[E_{\rm GW} = 10^{-2} M_{\odot} c^2]$	aLIGO AdV KAGRA	50 - -	60 25 -	80-90 35 5-25	110 - 120 65 - 80 25 - 95	210 100–155 95+
Burst Range (kpc) $[E_{\rm GW} = 10^{-9} M_{\odot} c^2]$	aLIGO AdV KAGRA	15 - -	20 10	25 - 30 10 0 - 10	35 - 40 20 - 25 10 - 30	$70 \\ 35 - 50 \\ 30 +$

SNR = 8 su ciascun rivelatore

What's Next?

- The detection of GW has been a huge scientific achievement, result of a century of efforts, but actually it is the beginning of a new era in the observation of the Universe
- 2nd generation GW detectors will explore local Universe, initiating the precision GW astronomy, but to have cosmological investigations a factor of 10 improvement is needed

\rightarrow need to develop a third generation of GW detectors

Einstein-Telescope

ET EINSTEIN TELESCOPE

10 km arm length

Equilateral triangle

200m – 300 m underground

Three detectors / 2 interferometers each

Science potentials for 3G detectors

Sensitivity improvement by at least an order of magnitude compared to 2G design sensitivities

Astrophysical reach for equal-mass, nonspinning binaries for Advanced LIGO, Einstein Telescope and Cosmic Explorer

Credit: M. Maggiore et al., Science case for the Einstein Telescope, https://arxiv.org/abs/1912.02622 Curves of constant SNR in the (total mass, redshift) plane, for a network of one ET and two CE detectors.

Credit: M. Colpi and A. Mangiagli

Detection horizon for black hole binaries

Einstein Telescope can observe BBH mergers to redshifts of about 100. This allows a new approach to cosmography. Study primordial black holes, BH from population III stars (first metal producers), *etc*.

BNS to $z \approx 2$: 10⁵ BNS/yr (15-50/yr with counterpart)

Einstein Telescope's science in a nutshell

ET will serve a vast scientific community: fundamental physics, astronomy, astrophysics, particle physics, nuclear physics and cosmology

ASTROPHYSICS

- Black hole properties
 - origin (stellar vs. primordial)
 - evolution, demography
- Neutron star properties
 - interior structure (QCD at ultra-high densities,
 - exotic states of matter)
 - demography
- Multi-band and -messenger astronomy
 - joint GW/EM observations (GRB, kilonova,...)
 - multiband GW detection (LISA)
 - neutrinos
- Detection of new astrophysical sources
 - core collapse supernovae
 - isolated neutron stars
 - stochastic background of astrophysical origin

FUNDAMENTAL PHYSICS AND COSMOLOGY

- · The nature of compact objects
 - near-horizon physics
 - tests of no-hair theorem
 - exotic compact objects
- Tests of General Relativity
 - post-Newtonian expansion
 - strong field regime
- Dark matter
 - primordial BHs
 - axion clouds, dark matter accreting on compact objects
- Dark energy and modifications of gravity on cosmological scales
 - dark energy equation of state
 - modified GW propagation
- Stochastic backgrounds of cosmological origin
 - inflation, phase transitions, cosmic strings

ET in the global network

• Einstein Telescope will operate in synergy with a new generation of innovative observatories

Science questions to be addressed by GWs

- Fundamental questions in Gravity:
 - New/further tests of GR
 - Exploration of possible alternative theories of Gravity
 - How to disprove that Nature black holes are black holes in GR (e.g. non tensorial radiation, quasi normal modes inconsistency, absence of horizon, echoes, tidal deformability, spin-induced multipoles)
- Fundamental questions in particle physics
 - Axions and ultralight particle through the evaluation of the consequences of new interactions, their impact on two bodies mechanics, in population and characterisics of BHs, NSs

Cosmology

- Probing the EOS of neutron stars
- Exotic objects and phenomena (cosmic strings, exotic compact objects: boson stars, strange stars/gravastars, ...)
- Cosmology and Cosmography with GWs
- Accurate Modelling of GW waveforms
- GW models in alternative theory of gravitation
- The population of compact objects discovered by GWs is the same measured by EM? Selection effects on BHs and NSs?

V. Fafone - Einstein Telescope

- What is the explosion mechanism in Supernovae?
- What is the history of SuperMassive black holes?
- GW Stochastic Background? Probing the big bang?
- Multimessenger Astronomy in 3G?

Astroparticle, GRB, <u>Neutrino Physics</u>

tonsorial radiation, quasi normal modes inconsistency, abs

Fundamental interactions, Dark matter, dark energy

Inflation, additional interactions, dark matter

Nuclear physics, quark-gluon plasma, Neutrino Physics

Nuclear physics, <u>Neutrino Physics</u>

Cosmology, inflation

Cosmology

- Is Einstein's General Relativity THE theory of gravitation?
 - Test of GR
 - Polarisations of GWs
 - Black Hole Quasi-Normal modes
 - Test of wave propagation
 - Massive Gravity

NB: the following slides are extracted from the GWIC-3G and ET science case documents

E

Alternative theories of Gravity: polarisations

• Alternative theories of gravity could predict extra polarisations of GW (up to 6)

• 2G detectors are attempting to verify the GW tensorial nature:

• GR predicts a tensorial nature of GW with two polarisations

- + and x polarisations can be resolved by 2 interferometers at 45° (C)
- A null stream can be realised (B): $h_{null} = h_1 h_2$
- ET, thanks to its multi-detector design, is capable to resolve the two polarisations of the GW

QuasiNormal modes of a BH

- In GR, no-hair theorem predicts that BHs are described only by their mass and spin (and charge)
 - However, when a BH is perturbed, it reacts (in GR) in a very specific manner, relaxing to its stationary configuration by oscillating in a superpositions of quasi-normal modes, which are damped by the emission of GWs.
 - A BH, a pure space-time configuration, reacts like an elastic body → Testing the "elasticity" of the space-time fabric
 - Exotic compact bodies (boson stars, stars made of dark matter particles...) could have a different QN emission and have echoes

ET will resolve QN emission by BH

Test of wave propagation

- Modified theories of gravity predict dispersion
 - Dispersion modifies the phase and frequency of the detected GW signal
 - 2G detectors already imposed a severe limit on:

 $m_g < 1.8 \ 10^{-23} \ eV/c^2$

• ET and the 3G network, observing GW sources at $z \sim 20$ will improve the limit by about 2 orders of magnitude

$$E^{2} = p^{2}c^{2} + Ap^{\alpha}c^{\alpha}$$
$$E^{2} = p^{2}c^{2} + m_{g}^{2}c^{4} \qquad \lambda_{g} = h/(m_{g}c)$$

Primordial BHs in ET

- ET will detect BH well beyond the SFR peak $z \sim 2$
 - comparing the redshift dependence of the BH-BH merger rate with the cosmic star formation rate it will be possible to disentangle the contribution of BHs of stellar origin from that of possible BHs of primordial origin (whose merger rate is not expected to be correlated with the star formation density)

Redshift

V. Fafo

- The huge number of detections in ET will allow to perform cross-correlations between the detected GW events and large-scale structures, providing another clue to the origin of the observed BHs.
- Primordial BHs of mass around a solar mass could have formed at the QCD quark-hadron transition via gravitational collapse of large curvature fluctuations generated during the last stages of inflation.
 - This could explain not only the present abundance of dark matter but also the baryon asymmetry of the universe.

Investigating axion-like particle with GWs

- Axions or, in general, light scalar fields are a possible extension of the Particle standard model and they could be a component of the dark matter or dark energy
 - Axions could provide an inflation mechanism
- What GW could tell about Axions?

strain

Highlights in some fundamental questions: #3

- What is the nature of the Dark Energy?
- ET will detect O(10⁵-10⁶) BNS and BBH coalescences per year
- Let suppose that only O(10²-10³) will have an em counterpart
- It is possible to combine the two messenger to fit the cosmological model of the Universe
 - ET will define the luminosity distance dL of the source
 - The em counterpart will give the red shift z

$$d_{L}(z) = \frac{c(1+z)}{H_{0}} \int_{0}^{z} \frac{dz'}{\sqrt{\Omega_{M}(1+z')^{3} + \Omega_{\Lambda}(1+z')^{3(1+w)}}}$$

 $\Omega_{_M}\,$ Dark matter density

 $\Omega_{\Lambda} = \frac{\rho_{DE}}{\rho_{C}} \quad \frac{\text{Dark Energy density}}{\text{Closure density}}$

First "attempt" with the measurement of H0 made with GW170817

3

V. Fafone - Einstein Telescope

E

Neutron Star Equation of state

EINSTEIN

Structure of a Neutron Star

- Measuring the tidal deformation through the dephasing in the GW signal is possible to constrain the EOS of the NS
 - Advanced+ detector could arrive to an accuracy less than 1km
 - To go below 100m we need 3G detectors

Multi-messenger astronomy

- ET EINSTEIN TELESCOPE
- GW are the only messenger that transport information before the event is occurred
- In GW170817 we had a large delay between the event and the alert, but in O3 the alert are automatically sent in few minutes AFTER the merging

Low frequency: Multi-messenger astronomy

- If we are able cumulate enough SNR before the merging phase, we can trigger e.m. observations before the emission of photons
- Keyword: low frequency sensitivity→ET

From 2G to 3G

• To achieve the expected targets of physics, ET must gain about an order of magnitude of frequency wrt the 2G detectors

- This is obtaining mixing up 3 ingredients:
 - Infrastructure
 - Detector design
 - Technology

Einstein Telescope Design Studies

- Conceptual Design Study: https://tds.virgo-gw.eu/?call_file=ET-0106C-10.pdf
- Design Report Update: https://apps.et-gw.eu/tds/?content=3&r=17245

The ET underground infrastructure

- GW detectors sensitivity scales linearly with the length of the arms:
 - From 3km of AdV to 10km of ET
- To reduce the impact of the environmental disturbances (seismic, acustic, electromagnetic) the ET infrastructure is located underground

Xylophone detector design

. .

- Einstein Telescope splits the detection band over two instruments: an interferometer optimized for measuring low-frequency gravitational waves and an optimized high-frequency interferometer
- ET-LF: large cryogenic (10 20 K) silicon test masses, seismic suspensions, new wavelength, FDS, ...
- ET-HF: high power laser, high circulating light power, thermal compensation, large test masses, FDS,

Einstein Telescope xylophone sensitivity

- Three detectors with arm length of 10 km
- Each detector consists of a low-frequency and a high-frequency interferometer
- All six interferometers will be sited in hard-rock up to a few hundred meters underground

Detector Design

- The second ingredient to gain sensitivity and science potential in ET wrt 2G detectors is the detector design:
- ET is an Observatory
 - The Observatory is composed by 3 detectors
 - Each detector is composed by two interferometers

STAND-ALONE OBSERVATORY

• Start with a single (xylophone) detector

STAND-ALONE OBSERVATORY

- Start with a single (xylophone) detector
- Add a second one to fully resolve polarizations

STAND-ALONE OBSERVATORY

- Start with a single (xylophone) detector
- Add a 2nd one to fully resolve polarization
- Add a 3rd one for redundancy

Each detector (red, green and blue) consists of two Michelson interferometers. The HF detectors need one filtercavity each, while the LF detectors require 2 filter cavities each due to the use of detuned signal recycling. Number of 'long' suspensions = 21 (ITM, ETM, SRM, BS, PRM of LF-IFOs) of which 12 are crogenic.

Grn-LF

LOKM

Grn-HF

10km

(North

Number of 'normal' suspensions (PRM, BS, BD and FC) = 45 for linerar filtercavities and 54 for triangular filter cavities

Blu-

Beams per tunnel =7

Red-

Examples for 3G challenges

- the identification of a facility site with low seismic and acoustic noise, and other suitable environmental properties
- development of mitigation techniques for gravity gradient noise
- development of low-noise, efficient cryogenic mirror suspension
- the production of large, high-quality test mass substrates, both silica and silicon or sapphire
- the polishing and coating of large test mass substrates to very low spatial roughness at larger spatial scales
- the development of suitable mirror coatings
- the development of multi-stage suspensions supporting test masses of several 100 kg
- the development of lower cost vacuum technology for ultra-high vacuum in vacuum chambers and the beam pipes

Project timeline

• Approved by ESFRI for the 2021 Roadmap

								* T	entative s	chedule
> 20	021 〉 20	22 🔪 2024 🔪	2025 🔪	2026	2028	> 203	30 >		2035	
\diamond \diamond		ESFRI st	atus							
CDR ESFR	l proposal								i	
2011 2020										
Enabling te	chnologies o	levelopment							i i	
<mark>Sites qualifi</mark>	cation		Site dec	ision					1	
Cost evalua	tion								1	
Building gov	vernance								1	
Raising initi	al funds								1	
F	Raising cons	truction funds							i	
		Co	ommitting co	onstructio	n funds				1	
Pre-engine	ering studies	<mark>;</mark>							1	
_		RI operative TD		ET	RI constr	ruction			1	
		Detector operati	ve TD	ET	ITFs con	structio	n		1	
						ET in	stallatio	n	I.	
						C	ommise	sioning	Scienc	е
ESFRI Phases:	Design	Preparatory		Imp	lementat	ion			Operat	ion

Site decision timeline and procedure

- Activities are well underway. Decision and site selection procedure determined at government level
- Site qualification activities in progress
- Currently there are two sites, in Europe, candidate to host ET:
 - The Sardinia site, close to the SosEnattosmine
 - The EU RegioRhine-Meussesite, close to the NL-B-D border
 - A third option in Saxony (Germany) is under discussion

Value creation for society

• ET stimulates national and regional innovation power, activity, employment and attractivity for top scientists

Socio-economic studies

employment: 34,000 man-years during construction; 1,500 jobs structurally each euro invested provides a total of 3.6 euros in the economy

Measuring and attenuating vibrations: nano-technology, medical, defense

Cryogenic systems: ET's low frequency interferometer will feature cooled silicon optics

Optics: coatings, special materials, laser technology, semiconductor technology

Vacuum technology: ET will feature one of the biggest vacuum systems worldwide

ET UHV system:

- beam tubes: 120,000 m³
- pressure < 10⁻¹⁰ hPa
- hydrocarbons < 10⁻¹⁴ hPa
- area: 420,000 m²

LHC at CERN:

- beam tubes: 2,000 m³
- pressure < 10⁻¹⁰ hPa
- insulating vac.: 15,000 m³
- pressure < 10⁻⁶ hPa

Actually, really exciting times ahead on all gravitational wave fronts!

Advanced LIGO+ upgrades

Advanced Virgo+ upgrade

KAGRA, Japan

+ LIGO India

+ Pulsar Timing Array V. Fafone - Einstein Telescop

+ many other future projects