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HIGH-ENERGY PHENOMENA



POWER OUTPUT OF WEAK SOURCES, SUCH AS GW150914

[Snapshot from press release 11 Feb 2016, https://youtu.be/vd1Pak5f6GQ]

B The total power output of two stellar-mass black holes merging
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POWER OUTPUT OF WEAK SOURCES, SUCH AS GW150914

[Snapshot from press release 11 Feb 2016, https://youtu.be/vd1Pak5f6GQ]

B The total power output of two stellar-mass black holes merging
Greater than 50 times all of the stars in the whole Universe put together
B Because total duration 20 ms
B Totalenergy released "only” three suns being totally annihilated and put into GWs
B Thisis equivalentto ~ 5 x 10°*ergs (5000 foe) = 3 x 10>*TeV
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POWER OUTPUT OF STRONG SOURCES, SMBHS

B The total energy of two supermassive black holes of masses
108 M, merging correspondsto 5 x 10® M., put into GWs



POWER OUTPUT OF STRONG SOURCES, SMBHS

B The total energy of two supermassive black holes of masses
10 M., merging corresponds to 5 x 108 M, putinto GWs

B Thisis ~ 10%ergs ~ 5 x 10%°TeV



A UNIVERSE OF BLACK HOLES



BLACK HOLES COME IN DIFFERENT FLAVORS

[Fig. 3 (trimmed) from first M87 Event Horizon Telescope Results.
1. The Shadow of the Supermassive Black Hole.
The Event Horizon Telescope Collaboration et al. 2019, ApJL 875 L1 ]



BLACK HOLES COME IN DIFFERENT FLAVORS

[Fig. 3 (trimmed) from first M87 Event Horizon Telescope Results.
1. The Shadow of the Supermassive Black Hole.
The Event Horizon Telescope Collaboration et al. 2019, ApJL 875 L1 ]

Formed by the gravitational collapse of a massive star, “collapsars”,



BLACK HOLES COME IN DIFFERENT FLAVORS

[Fig. 3 (trimmed) from first M87 Event Horizon Telescope Results.
1. The Shadow of the Supermassive Black Hole.
The Event Horizon Telescope Collaboration et al. 2019, ApJL 875 L1 ]

Formed by the gravitational collapse of a massive star, “collapsars”,
mpn/Mge € [5, few tens[, everywhere in the galaxy



BLACK HOLES COME IN DIFFERENT FLAVORS

[Fig. 3 (trimmed) from first M87 Event Horizon Telescope Results.
1. The Shadow of the Supermassive Black Hole.
The Event Horizon Telescope Collaboration et al. 2019, ApJL 875 L1 ]

Formed by the gravitational collapse of a massive star, “collapsars”,
mpn/Mge € [5, few tens[, everywhere in the galaxy

Formation debated,



BLACK HOLES COME IN DIFFERENT FLAVORS

[Fig. 3 (trimmed) from first M87 Event Horizon Telescope Results.
1. The Shadow of the Supermassive Black Hole.
The Event Horizon Telescope Collaboration et al. 2019, ApJL 875 L1 ]

Formed by the gravitational collapse of a massive star, “collapsars”,
mpn/Mge € [5, few tens[, everywhere in the galaxy

Formation debated, 10°> < M /Mg < 1010, galactic nuclei



BLACK HOLES COME IN DIFFERENT FLAVORS

[Fig. 3 (trimmed) from first M87 Event Horizon Telescope Results.
1. The Shadow of the Supermassive Black Hole.
The Event Horizon Telescope Collaboration et al. 2019, ApJL 875 L1 ]

Formed by the gravitational collapse of a massive star, “collapsars”,
mpn/Mge € [5, few tens[, everywhere in the galaxy

Formation debated, 10°> < M /Mg < 1010, galactic nuclei

Formation unclear,
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FACTS ABOUT BLACK HOLES

v General Relativity predicts them

v/ Physical phenomena can only be explained via them

Why such long lists?



v General Relativity predicts their existence
v We have a long list of indirect observational indications

v We have a long list of theoretical motivations for their existence

Why such long lists?

Because we do not have a direct evidence
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SO, THESE WAVES ARE A PROOF FOR THE EXISTENCE
OF BLACK HOLES... RIGHT?



Is the Gravitational-Wave Ringdown a Probe of the Event Horizon?

Vitor Cardoso'™. Edgardo Franzin®!, Paolo Pani™!
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It is commonly believed that the ringdown signal from a binary coalescence provides a conclusive
proof for the formation of an event 1 teon after the merger. This expectation is based on the
assumption that the ringdown wave! spec t ~wediate times is dominated by the quasinormal
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A PREDICTION



BACK IN 2015

RELATIVISTIC MERGERS OF BLACK HOLE BINARIES
HAVE LARGE. SIMILAR MASSES, LOW SPINS AND ARE CIRCULAR

PAU AMARO-SEOANE' & XIAN CHEN?

Dated: December 23, 2015
raft version December 23, 2015

ABSTRACT

Gravitational waves are a prediction of general relativity, and with ground-based detectors now running in
their advanced configuration, we will soon be able to measure them directly for the first time. Binaries of stellar-
mass black holes are among the most interesting sources for these detectors. Unfortunately, the many different
parameters associated with the problem make it difficult to promptly produce a large set of waveforms for the
search in the data stream. To reduce the number of templates to develop. and hence speed up the search, one
must restrict some of the physical parameters to a certain range of values predicted by either (electromagnetic)
observations or theoretical modeling, This allows one to avoid the need to blindly cover the whole parameter
space. In this work we show that “hyperstellar” black holes (HSBs) with masses 30 < Mgy /Mg < 100, ie
black holes significantly larger than the nominal 10 M, will have an associated low value for the spin, i.e.
a < 0.5. We prove that this is true regardless of the formation channel, and that when two HSBs build a binary,
cach of the spin magnitudes is also low, and the binary members have similar masses. We also address the
distribution of the eccentricities of HSB binaries in dense stellar systems using a large suite of three-body
scattering experiments with a highly accurate integrator, including relativistic corrections up to O(1 /%), We
find that most sources in the detector band will have nearly zero eccentricities. This correlation between large,
similar masses, low spin and low eccentricity will help to accelerate the searches for gravitational-wave signals.
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FEBRUARY 2016: FIRST DETECTION PRESENTED

IMRPhenom Overall
Detector-frame wtal mass M /M T[}.T'_':;
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Effective inspiral spin parameter y.g
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Final spin o, 067 06700 067G 0TS
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Source redshift = 0.0831) 0% 0.003 10028 00850 DAL L0004
Upper bound on primary spin magnitude uy 0.65 0.71 0.69 £ 0.05
Upper bound on secondary spin magnitude ap 0.93 0.81 0.88 £+ 0.10
Lower bound on mass ratio g 0.64 0.67 .65 £ 0.03
Log Bayes factor In 5, ,, 28R.T 0.2 2001 £ 0.2 -
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IT LOOKS WE GOT IT RIGHT
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WHY IS THIS SO IMPORTANT?

B From the point of view of fundamental physics:

B From the point of view of astrophysics:
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WHY IS THIS SO IMPORTANT?

B From the point of view of fundamental physics:

1. LIGO/Virgo detections of mergers and the inspiral are a prediction
of general relativity in the strong regime

2. We have a proof that gravitational waves exist and that objects
consistent with General Relativity (stellar-mass) black holes are
present in the Universe

B From the point of view of astrophysics:

1. These dark objects exist with masses larger than the nominal
10 My,

2. They form binaries

15



DO SUPERMASSIVE BLACK HOLES EXIST?



IT LOOKS LIKE THAT...

SIZE COMPARISON:
THE M87 BLACK HOLE

A
OUR SOLAR SYSTEM

F’Wff VoHBSER L

[From https://xkcd.com/2135/, using the figure from the EHT team web page, https://eventhorizontelescope.org/]
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THE SMBH IN OUR GALAXY: OUR CLOSEST CANDIDATE

. [NASA/JPL:Caltech/S. Stolovy (SSC/Caltech)]
B Observations of the Galactic Center reveal a strange fact
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THE SMBH IN OUR GALAXY: OUR CLOSEST CANDIDATE

. [NASA/JPL:Caltech/S. Stolovy (SSC/Caltech)]
B Observations of the Galactic Center reveal a strange fact

B Stars move... around a point (a radio source called SgrA¥)
B Four millions of solar masses, four millions of Suns
B Within a radius of 22 millions of km, enclosed in ~ 1/3 times the
distance between the Earth and the Sun
@ [Video: S-Stars, win+1]
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SINGULARITIES: WHY ARE THEY INTERESTING?



WORLDLINES

worldsheet  world volume

I
worldline

particle

[Credits: https://en.wikipedia.org/wiki/User:Stevertigo]
B A singularity is not a point in spacetime where gravity becomes

infinite. It is a much more subtle matter
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worldsheet  world volume

I
worldline

- string Nbrane
particle
[Credits: https://en.wikipedia.org/wiki/User:Stevertigo]
B A singularity is not a point in spacetime where gravity becomes
infinite. It is a much more subtle matter
B A spacetime is singular if it is inextendible... (it cannot be
embedded as an open set of a strictly larger space-time)
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WORLDLINES

worldsheet  world volume

I
worldline

) string Nbrane
particle
[Credits: https://en.wikipedia.org/wiki/User:Stevertigo]
B A singularity is not a point in spacetime where gravity becomes
infinite. It is a much more subtle matter
B A spacetime is singular if it is inextendible... (it cannot be
embedded as an open set of a strictly larger space-time)
B ... and admits a causal curve which has a finite past or future (or
both)
20


https://en.wikipedia.org/wiki/User:Stevertigo

EXAMPLES OF SINGULAR SPACETIMES

B Schwarzschild black hole:
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HOW TO INTERPRET THEM?

B The interpretation of incomplete wordlines is not clear

22



HOW TO INTERPRET THEM?

B The interpretation of incomplete wordlines is not clear

B An observer whose causal curve is incomplete would have a finite
past or a finite future. Or both.
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HOW TO INTERPRET THEM?

B The interpretation of incomplete wordlines is not clear

B An observer whose causal curve is incomplete would have a finite
past or a finite future. Or both.

B What happens beyond that is anyone’s guess.
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THIS IS NOT AN ACADEMIC EXERCISE

B Penrose and Hawking using techniques from differential topology
and variational calculus: The appearance of singularities in
physically realisable spacetimes is actually fairly common.
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THIS IS NOT AN ACADEMIC EXERCISE

B Penrose and Hawking using techniques from differential topology
and variational calculus: The appearance of singularities in
physically realisable spacetimes is actually fairly common.

B The conditions of these theorems are of the same form
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THREE CONDITIONS

(1) Positivity of energy. Matter fields must obey a certain kind of
energy condition, such as the null energy condition.
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THREE CONDITIONS

(1) Positivity of energy. Matter fields must obey a certain kind of
energy condition, such as the null energy condition.

(2) The existence of horizons. This is well known.

(3) Causality. Spacetime does not have closed causal curves.

24



CONNECTION BETWEEN GEOMETRY AND TOPOLOGY

[By Source, Fair use, https://en.wikipedia.org/w/index.php?curid=41668112]

B The integral over the curvature of a manifold is 27 its Eulear
characteristic

25
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CONNECTION BETWEEN GEOMETRY AND TOPOLOGY

[By Source, Fair use, https://en.wikipedia.org/w/index.php?curid=41668112]

B The integral over the curvature of a manifold is 27 its Eulear
characteristic

B Gauss-Bonet theorem: You just need to find ONE geometry

B One can link geometry to topology

25
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EXTREME-MASS RATIO INSPIRALS:
GETTING AS CLOSE AS WE CAN



EXTREME-MASS RATIO INSPIRALS

[Video: Extreme-mass ratio inspiral, by S. Drasco win+2 and Natalia win+3]

&

Stellar-mass object spiraling into 10 — 108 M,
Such massive black holes are hosted in relaxed galactic nuclei (!)
With LISAz~ 1,4

[Amaro-Seoane 2018, Babak et al +Amaro-Seoane 2017, Amaro-Seoane et al 2007]
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AN ILLUSTRATION
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FUNDAMENTAL PHYSICS IN THE STRONG GRAVITY REGIME

O Extreme-mass ratio inspirals

[Amaro-Seoane et al 2007, 2012a, 2012b, Amaro-Seoane et al 2015, Amaro-Seoane 2018]
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n

- Probes of the geometry of spacetime around those “dark objects

[Amaro-Seoane et al 2007, 2012a, 2012b, Amaro-Seoane et al 2015, Amaro-Seoane 2018]
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FUNDAMENTAL PHYSICS IN THE STRONG GRAVITY REGIME

@ Extreme-mass ratio inspirals

- There has not been any other mission conceived, planned or even
thought of ever that can do the science that we can do with them

@ General Relativity is a theory, needs corroboration
- Thisis a unique probe in the strong regime
® Worldline of EMRIs give us a “geo"desic of spacetime
- Probes of the geometry of spacetime around those “dark objects”

- Tests of alternative theories of gravity (e.g. Chern-Simons, with
higher dimensions)

O Measures (redshifted) parameters such as mass and spin

[Amaro-Seoane et al 2007, 2012a, 2012b, Amaro-Seoane et al 2015, Amaro-Seoane 2018]
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FUNDAMENTAL PHYSICS IN THE STRONG GRAVITY REGIME

@ Extreme-mass ratio inspirals

- There has not been any other mission conceived, planned or even
thought of ever that can do the science that we can do with them
@ General Relativity is a theory, needs corroboration
- Thisis a unique probe in the strong regime
® Worldline of EMRIs give us a “geo"desic of spacetime

- Probes of the geometry of spacetime around those “dark objects

- Tests of alternative theories of gravity (e.g. Chern-Simons, with
higher dimensions)

® Measures (redshifted) parameters such as mass and spin

- With unprecedent precision

[Amaro-Seoane et al 2007, 2012a, 2012b, Amaro-Seoane et al 2015, Amaro-Seoane 2018]
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A PROBLEM OF 10 ORDERS OF MAGNITUDE

Cluster dynamics

Newtonian, collisional
B | oo ~ 109 =108 Mg pe?
0y ~ 100 — 1000 kms ™"
b o ~ 108 — 1010 yrs

P gal ~ 0.05 Mope
a,

Relativistic dynamics
collisional or not (low N)
Ma ~ 100 —10° Mg,

Ry = 1077 = 10~% pe

Note: 1pc ~ 3 light years

[Amaro-Seoane 2012] 30



CAN WE DETECT THEM?



THE LASER INTERFEROMETER SPACE ANTENNA

Laser Interferometer Space Antenna

[Trimmed from original figure by NASA/Simon Barke]

[Amaro-Seoane et al 2017, arXiv170200786A]
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THE LASER INTERFEROMETER SPACE ANTENNA

Laser Interferometer Space Antenna

[Trimmed from original figure by NASA/Simon Barke]

funded by ESA/NASA
with sides 2.5 million km long

[Amaro-Seoane et al 2017, arXiv170200786A]
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THE LASER INTERFEROMETER SPACE ANTENNA

Laser Interferometer Space Antenna

[Trimmed from original figure by NASA/Simon Barke]

funded by ESA/NASA
with sides 2.5 million km long
along an Earth-like heliocentric orbit

[Amaro-Seoane et al 2017, arXiv170200786A]
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: ABOUT 1/2 OF THE COST 1ST DIVISION SPANISH LIGA (2018/2019)
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LISA PATHFINDER - A TRUE ACHIEVEMENT
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B LISA Pathfinder, launched 3/Dec/2015, placed two test masses in a nearly perfect
gravitational free-fall
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B Sub-Femto-g Free Fall, and differential acceleration measurements at 1 mHz can
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B LISA Pathfinder, launched 3/Dec/2015, placed two test masses in a nearly perfect
gravitational free-fall

B Sub-Femto-g Free Fall, and differential acceleration measurements at 1 mHz can
be done

B Approached and overtook LISA design requirements
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DO WE REALLY NEED TO WAIT 15(-ISH) YEARS TO
DETECT CAPTURES?






M “DETECTING INTERMEDIATE-MASS RATIO INSPIRALS FROM THE GROUND AND SPACE”

PAU AMARO SEOANE, PHYSICAL REVIEW D, VOLUME 98, ISSUE 6, 2018

H “RELATIVISTIC DYNAMICS AND EXTREME MASS RATIO INSPIRALS”

PAU AMARO SEOANE, LIVING REVIEWS IN RELATIVITY, VOLUME 21, ISSUE 1, ARTICLE ID. 4, 150 PP. 2018

M “INVESTIGATING THE RETENTION OF INTERMEDIATE-MASS BLACK HOLES IN STAR
CLUSTERS USING N-BODY SIMULATIONS”

KONSTANTINIDIS, S.; AMARO-SEOANE, P; KOKKOTAS, K. D., ASTRONOMY & ASTROPHYSICS, VOLUME 557, ID.A135, 8 PP., 2013

M “LASER INTERFEROMETER SPACE ANTENNA"

PAU AMARO SEOANE ET AL., ESA CALL FOR MISSIONS FOR THE L3 SLOT IN THE COSMIC VISION PROGRAMME



IMRIS CAN BE DETECTED RIGHT NOW

B Intermediate-mass ratio inspirals

[Konstantinidis, Amaro-Seoane & Kokkotas 2013, Amaro-Seoane 2018]
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IMRIS CAN BE DETECTED RIGHT NOW

B Intermediate-mass ratio inspirals
have lower masses and fallin the ET and/or LIGO/Virgo band

B First numerical simulations of a whole cluster including an IMBH

showed a surprise
B IMRIs might be more frequent than we thought

and can be detected now from the ground and jointly in the future

[Konstantinidis, Amaro-Seoane & Kokkotas 2013, Amaro-Seoane 2018]
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IMBHS

[IMBH in NGC 3783, Credit: ESO/M. Kornmesser]
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[IMBH in NGC 3783, Credit: ESO/M. Kornmesser]
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[IMBH in NGC 3783, Credit: ESO/M. Kornmesser]
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Mgnu ~ 0.1% Mspheroid and MBH, 8 X 0500
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FIRST NUMERICAL SIMULATIONS OF IMRIS



FIRST NUMERICAL SIMULATION OF AN IMRI

Investigating the retention of intermediate-mass black holes in
star clusters using N-body simulations

Symeon Konstantingdis""™, Pau Anuiro-Se

& Kostas D). Kokkotas® o

ABSTRACT

of T8 EHs

B Direct-summation code written from scratch for special-purpose

hardware: Myriad
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FIRST NUMERICAL SIMULATION OF AN IMRI

Investigating the retention of intermediate-mass black holes in
star clusters using N-body simulations

ABSTRACT

Contest. (1

B Direct-summation code written from scratch for special-purpose

hardware: Myriad

B Aim: Simulate stellar clusters realistically including massive black
holes

B All phenomenaincluded at least at lowest order
In particular: relativistic corrections and recoil 40



DYNAMICAL EVOLUTION
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YEARS OF FOREWARN WITH SECONDS OF PRECISION
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LIGO/VIRGO
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PLUNGES

B Perturbations at pericenter from bulk of system are dangerous
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PLUNGES

B Perturbations at pericenter from bulk of system are dangerous
Deflect it off or make it plunge through horizon

B Getting closer to SMBH is a possibility
But number density drops orders of magnitude

B That's a pity

Plunges are more frequent than adiabatic EMRIs
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B Number of periapsis passages for an extremely radial EMRI
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NOT AN ACADEMIC EXERCISE

B Number of periapsis passages for an extremely radial EMRI
before it plunges?

B Calculate (E, L;, C) and their average time evolution
Derive number of periapsis passages

B Dependingon:ands...
... 10 and 10° passages in the bandwidth
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A FAMILY OF SEPARATRICES: s = 0.1
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A FAMILY OF SEPARATRICES: s = 0.7
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A FAMILY OF SEPARATRICES: s = 0.999
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IMPACT OF THE SPIN ON THE RATES?

: N dNo(a)
Newn = In (6.2) tr(a)

0.1 + 1on
E 1-body inspiral E
@ P 3 10%
0.01 E
£ = 109
10-3 E E 108
Fy i 1 =
= a 107 ¢
5
© 10 | 8
£ = 108
[ Myg=10°M, E
M,=10M, 1
10-¢ E t,=10%yr 3 10°
[ - 10
1078 ]
F = 108
Covnnd v vl v vl vl v vl 4 0d

10-® 10+ 102 0.01 0.1 1
1-e 54



IT'S ALL ABOUT AN UPPER LIMIT

N /BEMRI dN. (a)
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KERR VS. SCHWARZSCHILD

Kerr Schw

AEMRI = apMR1 X W27 (1, s)

20 —45

\Kerr \JSchw A) T
NEMR1 = Neyrr X W (¢, s)

B Take a typical value of a prograde orbit with high spin: W = 0.15;
thenforamodest — 1.5

Kert Schw
Nl MR1 ~ 114 X NI MRI
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GRAVITATIONAL WAVE AND (CAN DIDATE) BLACK
HOLES...
A CHECK MARK LIST
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CHECK MARK LIST

Have LIGO and Virgo directly detect GWs ... v’

Detect merging black holes ... v/

Detect inspiraling neutron stars ... v/

... and the associated electromagnetic counterpart ... v/
Open up multimessenger astronomy ... v’

Do sub-femto-g measurements with LISA Pathfinder ... v’
Get LISA have a firm launch slot at ESA ... v/

Get the 2017 Nobel Prize ... v

“See" the event horizon of M87 thanks to the EHT ... v/
Get the 2020 Nobel Prize ... v

Get fashion involved in GWs ... v/
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GW JACKETS

Seen at the Gangnam Station Underground Shopping Center, next to line 2, Seoul, 23/Dec/2017
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EXTRA MATERIAL



HARMONICS

The strain amplitude in the n-th harmonic at a given distance D,
normalized to the typical values of this work is

G* Mpamco
Dact

D -t a -1
~8x 10723 _— —_—
. g(n.€) (500 Mpc> (10—5 pC)
Mgu mco
103 M, ) \10M,, /)
In this expression Mgy is the mass of the IMBH, mco is the mass of
the compact object (CO), and g(n, e) is a function of the harmonic

number n and the eccentricity e peters e matthews 19631. We consider the RMS
amplitude averaged over the two GW polarizations and all directions.

h, = g(n, e)
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COMBINING DYNAMICS AND GRAVITATIONAL RADIATION

o _ %GSMBH mco(Mpu + Mco)
e 5 Sa3(1 — e2)7/2
73, 37,
(1 I ﬂe e %e )
e — 304 G*Mgu mco(Msx + mco)
AT ca*(1 — e2)3/2

o1+ 354)

The GW terms are as given in freters 19641,
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COMBINING DYNAMICS AND GRAVITATIONAL RADIATION

Using the relationships of rauinen 10967, we have that

ap = —H —2a>. (3)

For the kind of binaries | am considering in this work, i.e. hard ones,
we have that (de/dIn(1/a)) = K(e). Since the density drops
significantly during the evolution, we can regard o as approximately
constant and hence de = K(e) dIn(1/a) = —K(e)/a da, so that H ~ 16,
as in the original work of jauintn1996. Therefore,

en = - GpaK(e), (4)

Wlth K(e) Y KO e(l - ez), as in the WOI’k Of [Merritt & Milosavljevi¢ 2005]«
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PHASE SHIFT

We can estimate the accumulated phase shift to lowest
post-Newtonian order and to first order in e with [Krolak et al 1995]

AV (f) =V — VU = —V; =

7065 o

fis the frequency for the n = 2 harmonic, and | have introduced the
quantity M, := (1 4 2)G (Mg x mco)>® (Mgn 4+ mco)~Y/5/c3. Also,
| make the approximation that AW(f) = Wiae, — Wi ~ =W, with Wpe
and V; the final and initial phase. This is so because of the
pronounced fall-off of W.(f) with increasing frequency, see discussion
in section B.2 of Cutler and Harms 2006.
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PHASE SHIFT

The semi-major axis of the binary is [Kepler 1619]

a3 _ G(MBH+mCO). (6)

2
(1)

The time for merger for e < 1 can be derived from Peters 1964 as

follows,

~ 2 ¢
87 256 G3Mgy x mco (Mpa + mco)
G(Msn + mco) 2
(m )2 '

2

Tm

Last, let us recall that

e? f1%/° =~ constant, (8) o6



PHASE SHIFT

Therefore, if we use Eq. (2?) in Eq. (22), we obtain

5 3/8
~ 5/81—3/8
nf <256> M, /8T 38, (9)

Hence, using Egs. (22, 72, 7?), we have that the accumulated phase
shift in terms of f, e(f), M, and Ty is

5\ */*? 7065
AVe(f) = (256) 187136
(7rf)19/9 2M25/36-,—17/12

mrg

mrg
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