Measuring Mercury EXOSPHERE from Earth

With a Solar Telescope!

Mercury

- Closest planet to the Sun
 - a difficult target to observe

Parameter	Mercury	Earth	
Mean orbital axis (AU)	0.387	1	
Eccentricity	0.206	0.017	
Inclination to ecliptic	7°	0°	
Sidereal orbital period (Earth day)	87.97	365.26	
Sidereal rotation period (Earth day)	58.64	1	
Diurnal period (Earth day)	176	0.5	
Spin axis obliquity to orbit	0.1°	23.4°	
Mass (10 ²⁴ kg)	0.33	5.97	
Radius (km)	2440	6374	
Density (g/cm³)	5.43	5.52	
Uncompressed density (g/cm ³)	5.4	4.4	
Surface gravity at equator (m/s ²)	3.82	9.81	
Escape velocity (km/s)	4.25		
Maximum surface temperature (K)	700	279	
Minimum surface temperature (K)	90		
Magnetic field moment	3·10² nT R _M ³	3 · 10⁴ nT R _E ³	
Magnetic axis inclination to spin axis	10 °	17 °	

Mercury Exosphere

- Exosphere: part of the atmosphere that is NOT gravitationally bound
- Needs to be replaced!
 - Sun (direct radiation, particles)?
 - Planetary and/or Interplanetary Magnetic field?
 - Interplanetary environment (micrometeoroids)?

• Composition:

- H, O, He (by Mariner 10)
- Na, K, Ca (From Earth)
- Mg, Al, Mn (by MESSENGER) + Others upper limits

Why the Exosphere?

(Milillo et al., 2005)

Emitted and reflected photons

 Reflected SOLAR spectrum →
 In Absorption

 (relative doppler Mercury from Earth + Sun from Mercury)

 Na from MERCURY EXOSPHERE →
 In Emission

 (relative doppler: Mercury from Earth)

Resonant Scattering

Excitation by solar photons
 De-excitation and photons emission
 → Na D lines = 5890-5896 Angstrom

- 2P1/2 → 2S1/2 transition = D1
 - 2P3/2 → 2S1/2 transition D2

→ The D lines are in a region relatively free of telluric lines.

→ Emission only observable in the sunlit zone

Observing with TNG

M1 diameter Focal length M2 diameter M2 baffle diam. Scale

Vignetting-free field 38.5m (F/11) 0.875m 1.165m 5.36 arcsec/mm 25 arcmin

diameter

3.58m

Spectrograph
resolution115000Slit length and width26.7 x 0.40 arcsecPixel dimension and
scale0.022 A, 0.16
arcsecCCD dimension2K x 4K pixels

Slit Number	Obs.Time (UT)	Theoretical Position	Final Position	Seeing Sigma	Calibration Factor
HYNB0053	20:16	0.0	+ 0.3	1.1	1.99
HYNB0054	20:19	- 2.0	- 1.4	1.1	2.75
HYNB0055	20:22	- 4.0	- 2.8	1.0	12.07
HYNB0056	20:26	- 6.0	- 4.5	1.2	35.52
HYNB0057	20:30	+ 1.0	- 0.4	1.0	2.20
HYNB0058	20:33	- 1.0	+ 1.5	1.2	2.12
HYNB0059	20:37	0.0	+ 0.5	1.0	2.11
HYNB0060	20:40	- 3.0	- 1.5	0.9	2.62

Observing with THEMIS

F/16 Ritchey-Chretien 0.9 m solar telescope Helium filled telescope tube Very low level of scattered light

MTR møde for multiline spectropolarimetry

 Spectral range 400 to 1000 nm at :

 R ~ 220,000
 Slit: 0.5" & 120 " long

 R ~ 400,000
 Slit: 0.25" & 70 " long

 Spectral resolution
 0.027 Å to 0.016 Å

 Spectral dispersion
 10.2 to 6 mÅ

 Two individual cameras: Na D1 at 5896 Å

 Na D2 at 5889 Å

THEMIS observations

- The slit is oriented in the N-S axis of Mercury and is moved E-W to scan the whole disk of the planet
- The scans result in a data-cube with both the 2D spatial dimensions and the wavelength
- In about 40 to 120 minutes a complete scan of Mercury exosphere is obtained
- Advantage of working all day long (i.e. up to 12 hours/ day in summer time) with no fear of solar light
- Possibility to study <u>exospheric dynamics</u> (peaks variability in intensity and position)

THEMIS observations

- The slit is oriented in the N-S axis of Mercury and is moved E-W to scan the whole disk of the planet
- The scans result in a data-cube with both the 2D spatial dimensions and the wavelength
- In about 40 to 120 minutes a complete scan of Mercury exosphere is obtained
- Advantage of working all day long (i.e. up to 12 hours/ day in summer time) with no fear of solar light
- Possibility to study <u>exospheric dynamics</u> (peaks variability in intensity and position)

(Leblanc et al 2009)

THEMIS observations

Statistical analysis: identification of 8 different Na exospheric patterns

→ Possibility to make statistical analysis and Na correlate exospheric patterns with local IMF

(Mangano et al 2015)

Messenger mission

MErcury Surface, Space ENvironment, GEochemistry, and Ranging

Discovery' mission by NASA
Lift-off: 3 August 2004
Flybys: 2008 (2), 2009 (1)
In orbit: 18 March 2011
End of Mission: 30 April 2015

Standard exosphere situation

→ 7 June 2012

Mercury Exosphere

(Raines et al., 2015)

CME-exosphere interaction

\rightarrow 20 September 2012

CME-exosphere interaction

\rightarrow 20 September 2012

Upcoming: BepiColombo

MPO in close-by orbit:

The SERENA instrument suite will measure the ions and neutral atoms characteristics

Upcoming: BepiColombo

Comparing the two observations Complementing the information about the Exosphere

Some Literature

- McClintock, William E., et al. "Observations of Mercury's exosphere: composition and structure." Mercury. The View after MESSENGER. Edited by Sean C. Solomon (2018): 371-406.
- Killeen, Rosemary M., et al. "Understanding Mercury's Exosphere: Models Derived."
- Orsini, Stefano, et al. "Mercury sodium exospheric emission as a proxy for solar perturbations transit." Scientific reports 8.1 (2018): 1-10.
- Mangano, Valeria, et al. "THEMIS Na exosphere observations of Mercury and their correlation with in-situ magnetic field measurements by MESSENGER." Planetary and Space Science 115 (2015): 102-109.
- Killen, Rosemary, et al. "Processes that promote and deplete the exosphere of Mercury." Space science reviews 132.2-4 (2007): 433-509.
- Milillo, A., et al. "Surface-exosphere-magnetosphere system of Mercury." Space Science Reviews 117.3 (2005): 397-443.
- Massetti, Stefano, et al. "Short-term observations of double-peaked Na emission from Mercury's exosphere." Geophysical Research Letters 44.7 (2017): 2970-2977.
- Leblanc, François, et al. "Short-term variations of Mercury's Na exosphere observed with very high spectral resolution." Geophysical research letters 36.7 (2009).